DOI QR코드

DOI QR Code

Generalized Quasi-Einstein Metrics and Contact Geometry

  • Biswas, Gour Gopal (Department of Mathematics, University of Kalyani) ;
  • De, Uday Chand (Department of Pure Mathematics, University of Calcutta) ;
  • Yildiz, Ahmet (Education Faculty, Department of Mathematics, Inonu University)
  • Received : 2021.02.15
  • Accepted : 2022.02.10
  • Published : 2022.09.30

Abstract

The aim of this paper is to characterize K-contact and Sasakian manifolds whose metrics are generalized quasi-Einstein metric. It is proven that if the metric of a K-contact manifold is generalized quasi-Einstein metric, then the manifold is of constant scalar curvature and in the case of a Sasakian manifold the metric becomes Einstein under certain restriction on the potential function. Several corollaries have been provided. Finally, we consider Sasakian 3-manifold whose metric is generalized quasi-Einstein metric.

Keywords

Acknowledgement

The authors would like to thank the referees and editor for reviewing the paper carefully and their valuable comments to improve the quality of the paper.

References

  1. A. Barros, R. Batista and E. Ribeiro, Jr, Rigidity of gradient almost Ricci solitons, Illinois J. Math., 56(2012), 1267-1279. https://doi.org/10.1215/ijm/1399395831
  2. A. Barros and J. N. Gomes, A compact gradient generalized quasi-Einstein metric with constant scalar curvature, J. Math. Anal. Appl., 401(2013), 702-705. https://doi.org/10.1016/j.jmaa.2012.12.068
  3. N. Basu and B. Bhattacharyya, Gradient Ricci almost soliton in Sasakian manifolds, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis, 32(2016), 161-164.
  4. A. L. Besse, Einstein manifolds, Springer-Verlag, Berlin(1987).
  5. D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in math., 203(2010), Birkhauser.
  6. D. E. Blair, T. Koufogiorgos and R. Sharma, A classification of 3-dimensional contact metric manifold with Q𝜑 = 𝜑Q, Kodai Math. J., 33(2010), 361-368.
  7. H. D. Cao, Recent progress on Ricci soliton, Adv. Lect. Math., 11(2009), 1-38.
  8. J. Case, The non-existence of quasi-Einstein metrics, Pacific J. Math., 248(2010), 277-284. https://doi.org/10.2140/pjm.2010.248.277
  9. J. Case, Y. -J. Shu and G. Wei, Rigidity of quasi-Einstein metrics, Diff. Geom. Appl., 29(2011), 93-100. https://doi.org/10.1016/j.difgeo.2010.11.003
  10. G. Catino, Generalized quasi-Einstein manifolds with harmonic Weyl tensor, Math. Z., 271(2012), 751-756. https://doi.org/10.1007/s00209-011-0888-5
  11. G. Catino and L. Mazzieri, Gradient Einstein solitons, Non-linear anal., 132(2016), 66-94. https://doi.org/10.1016/j.na.2015.10.021
  12. G. Catino, L. Mazzieri and S. Mongodi, Rigidity of gradient Einstein shrinkers, Commun. Contemp. Math., 17(2015), 1550046, 18pp.
  13. X. M. Chen, Quasi-Einstein structures and almost cosymplectic manifolds, RACSAM, 72(2020), 14pp.
  14. U. C. De and P. Majhi, On a type of contact metric manifolds, Lobachevskii J. Math., 34(2013), 89-98. https://doi.org/10.1134/S1995080213010125
  15. U. C. De and A. Sarkar, On the quasi-conformal curvature tensor of a (κ, µ)-contact metric manifold, Math. Reports, 14(2012), 115-129.
  16. A. Ghosh, Generalized m-quasi-Einstein metric within the framework of Sasakian and K-contact manifolds, Ann. Polon. Math., 115(2015), 33-41. https://doi.org/10.4064/ap115-1-3
  17. C. He and M. Zhu, Ricci solitons on Sasakian manifolds, arXiv : 1109.4407V2 [Math.DG] 26 sep 2011.
  18. G. Huang and Y. Wei, The classification of (m, ρ)-quasi-Einstein manifolds, Ann. Global Anal. Geom., 44(2013), 269-282. https://doi.org/10.1007/s10455-013-9366-0
  19. G. Huang, Integral pinched gradient shrinking ρ-Einstein solitons, J. Math. Anal. Appl., 451(2017), 1025-1055. https://doi.org/10.1016/j.jmaa.2017.02.051
  20. J. B. Jun and A. De, On N(κ)-contact metric manifolds satisfying certain curvature conditions, Kyungpook Math. J., 51(2011), 457-468. https://doi.org/10.5666/KMJ.2011.51.4.457
  21. J. B. Jun, I. -B. Kim and U. K. Kim, On 3-dimensional almost contact metric manifolds, Kyungpook Math. J., 34(1999), 293-301.
  22. M. A. Mirshafeazadeh and B. Bidabad, On generalized quasi-Einstein manifolds, Adv. Pure Appl. Math., 10(2019), 193-202. https://doi.org/10.1515/apam-2017-0112
  23. M. A. Mirshafeazadeh and B. Bidabad, On the Rigidity of generalized quasi-Einstein manifolds, Bull. Malays. Math. Sci. Soc., 43(2020), 2029-2042. https://doi.org/10.1007/s40840-019-00788-8
  24. C. Ozgur, Contact metric manifolds with cyclic-parallel Ricci tensor, Differ. Geom. Dyn. Syst., 4(2002), 21-25.
  25. C. Ozgur and S. Sular, On N(κ)-contact metric manifolds satisfying certain conditions, SUT J. Math., 44(2008), 89-99.
  26. R. Sharma, Certain results on K-contact and (κ, µ)-contact manifolds, J. Geom., 89(2008), 138-147. https://doi.org/10.1007/s00022-008-2004-5
  27. V. Venkatesha and H. A. Kumara, Gradient ρ-Einstein soliton on almost Kenmotsu manifolds, Ann. Univ. Ferrara Sez. VII Sci. Mat., 65(2019), 375-388. https://doi.org/10.1007/s11565-019-00323-4
  28. A. Yildiz, U. C. De, C. Murathan and K. Arslan, On the Weyl projective curvature tensor of an N(κ)-contact metric manifold, Mathematica Pannonica, 21(2010), 129-142.