Acknowledgement
This work was supported by Universitas Hasanuddin and Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi Indonesia.
References
- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs and Mathematical Tables, Dover Publications, Washington(1972).
- M. A. H. Assagaf, A. Massinai, A. Ribal, S. Toaha S and M. I. Azis, Numerical simulation for steady anisotropic-diffusion convection problems of compressible flow in exponentially graded media, J. Phys. Conf. Ser., 1341(8)(2019), 082016. https://doi.org/10.1088/1742-6596/1341/8/082016
- M. I. Azis, Fundamental solutions to two types of 2D boundary value problems of anisotropic materials, Far East J. Math. Sci., 101(11)(2017), 2405-2420.
- M. I. Azis, BEM solutions to exponentially variable coefficient Helmholtz equation of anisotropic media, J. Phys. Conf. Ser., 1277(1)(2019), 012036. https://doi.org/10.1088/1742-6596/1277/1/012036
- M. I. Azis, Numerical solutions for the Helmholtz boundary value problems of anisotropic homogeneous media, J. Comput. Phys., 381(2019), 42-51. https://doi.org/10.1016/j.jcp.2019.01.002
- M. I. Azis, Standard-BEM solutions to two types of anisotropic-diffusion convection reaction equations with variable coefficients, Eng. Anal. Bound. Elem., 105(2019), 87-93. https://doi.org/10.1016/j.enganabound.2019.04.006
- M. I. Azis, I. Solekhudin I, M. H. Aswad and A. R. Jalil, Numerical simulation of two-dimensional modified Helmholtz problems for anisotropic functionally graded materials, J. King Saud Univ. Sci., 32(3)(2020), 2096-2102. https://doi.org/10.1016/j.jksus.2020.02.020
- S. Baja, S. Arif, Fahruddin, N. Haedar and M. I. Azis, Boundary element method solutions for steady anisotropic-diffusion convection problems of incompressible flow in quadratically graded media, J. Phys. Conf. Ser., 1341(6)(2019), 062019. https://doi.org/10.1088/1742-6596/1341/6/062019
- Fendoglu H, Bozkaya C and Tezer-Sezgin M, DBEM and DRBEM solutions to 2D transient convection-diffusion-reaction type equations, Eng. Anal. Bound. Elem., 93(2018), 124-134. https://doi.org/10.1016/j.enganabound.2018.04.011
- A. Haddade, M. I. Azis, Z. Djafar, St. N. Jabir and B. Nurwahyu, Numerical solutions to a class of scalar elliptic BVPs for anisotropic, IOP Conf. Ser.: Earth Environ. Sci., 279(1)(2019), 012007. https://doi.org/10.1088/1755-1315/279/1/012007
- A. Haddade, E. Syamsuddin, M. F. I. Massinai, M. I. Azis and A. I. Latunra, Numerical solutions for anisotropic-diffusion convection problems of incompressible flow in exponentially graded media, J. Phys. Conf. Ser., 1341(8)(2019), 082015. https://doi.org/10.1088/1742-6596/1341/8/082015
- S. Hamzah, M. I. Azis, A. Haddade and A. K. Amir, Numerical solutions to anisotropic BVPs for quadratically graded media governed by a Helmholtz equation, IOP Conf. Ser.: Mater. Sci. Eng., 619(1)(2019), 012060. https://doi.org/10.1088/1757-899X/619/1/012060
- S. Hamzah, A. Haddade, A. Galsan, M. I. Azis and A. M. Abdal, Numerical solution to diffusion convection-reaction equation with trigonometrically variable coefficients of incompressible flow, J. Phys. Conf. Ser., 1341(8)(2019), 082005. https://doi.org/10.1088/1742-6596/1341/8/082005
- H. Hassanzadeh and M. Pooladi-Darvish, Comparison of different numerical Laplace inversion methods for engineering applications, Appl. Math. Comput., 189(2007), 1966-1981. https://doi.org/10.1016/j.amc.2006.12.072
- E. Hernandez-Martinez, H. Puebla, F. Valdes-Parada and J. Alvarez-Ramirez, Nonstandard finite difference schemes based on Green's function formulations for reactionadiffusionaconvection systems, Chemical Engineering Science, 94(2013), 245-255. https://doi.org/10.1016/j.ces.2013.03.001
- St. N. Jabir, M. I. Azis, Z. Djafar and B. Nurwahyu, BEM solutions to a class of elliptic BVPs for anisotropic trigonometrically graded media, IOP Conference Series: Materials Science and Engineering, 619(1)(2019), 012059. https://doi.org/10.1088/1757-899X/619/1/012059
- A. R. Jalil, M. I. Azis, S. Amir, M. Bahri and S. Hamzah, Numerical simulation for anisotropic-diffusion convection reaction problems of inhomogeneous media, J. Phys. Conf. Ser., 1341(8)(2019), 082013. https://doi.org/10.1088/1742-6596/1341/8/082013
- N. Khaeruddin, A. Galsan, M. I. Azis, N. Ilyas and P. Paharuddin, Boundary value problems governed by Helmholtz equation for anisotropic trigonometrically graded materials: A boundary element method solution, J. Phys. Conf. Ser., 1341(6)(2019), 062007. https://doi.org/10.1088/1742-6596/1341/6/062007
- N. Lanafie, N. Ilyas, M. I. Azis and A. K. Amir, A class of variable coefficient elliptic equations solved using BEM, IOP Conference Series: Materials Science and Engineering, 619(1)(2019), 012025. https://doi.org/10.1088/1757-899X/619/1/012025
- N. Lanafie, P. Taba, A. I. Latunra, Fahruddin and M. I. Azis, On the derivation of a boundary element method for diffusion convection-reaction problems of compressible flow in exponentially inhomogeneous media, J. Phys. Conf. Ser., 1341(6)(2019), 062013. https://doi.org/10.1088/1742-6596/1341/6/062013
- Q. Li, Z. Chai and B. Shi, Lattice Boltzmann model for a class of convection- diffusion equations with variable coefficients, Comput. Math. Appl., 70(2015), 548-561. https://doi.org/10.1016/j.camwa.2015.05.008
- M. Meenal and T. I. Eldho, Two-dimensional contaminant transport modeling using mesh free point collocation method (PCM), Eng. Anal. Bound. Elem., 36(2012), 551-561. https://doi.org/10.1016/j.enganabound.2011.11.001
- B. Nurwahyu, B. Abdullah, A. Massinai and M. I. Azis, Numerical solutions for BVPs governed by a Helmholtz equation of anisotropic FGM, IOP Conference Series: Earth and Environmental Science, 279(1)(2019), 012008. https://doi.org/10.1088/1755-1315/279/1/012008
- Paharuddin, Sakka, P. Taba, S. Toaha and M. I. Azis, Numerical solutions to Helmholtz equation of anisotropic functionally graded materials, J. Phys. Conf. Ser., 1341(8)(2019), 082012. https://doi.org/10.1088/1742-6596/1341/8/082012
- R. Pettres and L. A. de Lacerda, Numerical analysis of an advective diffusion domain coupled with a diffusive heat source, Eng. Anal. Bound. Elem., 84(2017), 129-140. https://doi.org/10.1016/j.enganabound.2017.08.012
- A. Rap, L. Elliott, D. B. Ingham, D. Lesnic and X. Wen, DRBEM for Cauchy convection-diffusion problems with variable coefficients, Eng. Anal. Bound. Elem., 28(2004), 1321-1333. https://doi.org/10.1016/j.enganabound.2004.06.003
- N. Rauf, H. Halide, A. Haddade, D. A. Suriamihardja and M. I. Azis, A numerical study on the effect of the material's anisotropy in diffusion convection reaction problems, J. Phys. Conf. Ser., 1341(8)(2019), 082014. https://doi.org/10.1088/1742-6596/1341/8/082014
- J. Ravnik and L. ASkerget, A gradient free integral equation for diffusion-convection equation with variable coefficient and velocity, Eng. Anal. Bound. Elem., 37(2013), 683-690. https://doi.org/10.1016/j.enganabound.2013.01.012
- J. Ravnik and L. ASkerget, Integral equation formulation of an unsteady diffusion - convection equation with variable coefficient and velocity, Comput. Math. Appl., 66(2014), 2477-2488. https://doi.org/10.1016/j.camwa.2013.09.021
- I. Raya, Firdaus, M. I. Azis, Siswanto and A. R. Jalil, Diffusion convection-reaction equation in exponentially graded media of incompressible flow: Boundary element method solutions, J. Phys. Conf. Ser., 1341(8)(2019), 082004. https://doi.org/10.1088/1742-6596/1341/8/082004
- Sakka, E. Syamsuddin, B. Abdullah, M. I. Azis and A. M. A. Siddik, On the derivation of a boundary element method for steady anisotropic-diffusion convection problems of incompressible flow in trigonometrically graded media, J. Phys. Conf. Ser., 1341(6)(2019), 062020. https://doi.org/10.1088/1742-6596/1341/6/062020
- N. Salam, A. Haddade, D. L. Clements and M. I. Azis, A boundary element method for a class of elliptic boundary value problems of functionally graded media, Eng. Anal. Bound. Elem., 84(2017), 186-190. https://doi.org/10.1016/j.enganabound.2017.08.017
- N. Salam, D. A. Suriamihardja, D. Tahir, M. I. Azis and E. S. Rusdi, A boundary element method for anisotropic-diffusion convection-reaction equation in quadratically graded media of incompressible flow, J. Phys. Conf. Ser., 1341(8)(2019), 082003. https://doi.org/10.1088/1742-6596/1341/8/082003
- H. Stehfest, Algorithm 368: Numerical inversion of Laplace transforms [D5], Communications of the ACM, 13(1)(1970), 47-49. https://doi.org/10.1145/361953.361969
- S. Suryani, J. Kusuma, N. Ilyas, M. Bahri and M. I. Azis, A boundary element method solution to spatially variable coefficients diffusion convection equation of anisotropic media, J. Phys. Conf. Ser., 1341(6)(2019), 062018. https://doi.org/10.1088/1742-6596/1341/6/062018
- R. Syam, Fahruddin, M. I. Azis and A. Hayat, Numerical solutions to anisotropic FGM BVPs governed by the modified Helmholtz type equation, IOP Conference Series: Materials Science and Engineering, 619(1)(2019), 012061. https://doi.org/10.1088/1757-899X/619/1/012061
- F. Wang, W. Chen, A. Tadeu and C. G. Correia, Singular boundary method for transient convection- diffusion problems with time-dependent fundamental solution, Int. J. Heat Mass Transf., 114(2017), 1126-1134. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.007
- X-H. Wu, Z-J. Chang, Y-L. Lu, W-Q. Tao and S-P. Shen, An analysis of the convection-diffusion problems using meshless and mesh based methods, Eng. Anal. Bound. Elem., 36(2012), 1040-1048. https://doi.org/10.1016/j.enganabound.2011.07.014
- H. Yoshida and M. Nagaoka, Multiple-relaxation-time lattice Boltzmann model for the convection and anisotropic diffusion equation, J. Comput. Phys, 229(2010), 7774-7795. https://doi.org/10.1016/j.jcp.2010.06.037
- C. Zoppou and J. H. Knight, Analytical solution of a spatially variable coefficient advection-diffusion equation in up to three dimensions, Appl. Math. Model., 23(1999), 667-685. https://doi.org/10.1016/S0307-904X(99)00005-0