DOI QR코드

DOI QR Code

A Boundary Integral Equation Formulation for an Unsteady Anisotropic-Diffusion Convection Equation of Exponentially Variable Coefficients and Compressible Flow

  • Received : 2020.12.29
  • Accepted : 2021.06.21
  • Published : 2022.09.30

Abstract

The anisotropic-diffusion convection equation with exponentially variable coefficients is discussed in this paper. Numerical solutions are found using a combined Laplace transform and boundary element method. The variable coefficients equation is usually used to model problems of functionally graded media. First the variable coefficients equation is transformed to a constant coefficients equation. The constant coefficients equation is then Laplace-transformed so that the time variable vanishes. The Laplace-transformed equation is consequently written as a boundary integral equation which involves a time-free fundamental solution. The boundary integral equation is therefore employed to find numerical solutions using a standard boundary element method. Finally the results obtained are inversely transformed numerically using the Stehfest formula to get solutions in the time variable. The combined Laplace transform and boundary element method are easy to implement and accurate for solving unsteady problems of anisotropic exponentially graded media governed by the diffusion convection equation.

Keywords

Acknowledgement

This work was supported by Universitas Hasanuddin and Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi Indonesia.

References

  1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs and Mathematical Tables, Dover Publications, Washington(1972).
  2. M. A. H. Assagaf, A. Massinai, A. Ribal, S. Toaha S and M. I. Azis, Numerical simulation for steady anisotropic-diffusion convection problems of compressible flow in exponentially graded media, J. Phys. Conf. Ser., 1341(8)(2019), 082016. https://doi.org/10.1088/1742-6596/1341/8/082016
  3. M. I. Azis, Fundamental solutions to two types of 2D boundary value problems of anisotropic materials, Far East J. Math. Sci., 101(11)(2017), 2405-2420.
  4. M. I. Azis, BEM solutions to exponentially variable coefficient Helmholtz equation of anisotropic media, J. Phys. Conf. Ser., 1277(1)(2019), 012036. https://doi.org/10.1088/1742-6596/1277/1/012036
  5. M. I. Azis, Numerical solutions for the Helmholtz boundary value problems of anisotropic homogeneous media, J. Comput. Phys., 381(2019), 42-51. https://doi.org/10.1016/j.jcp.2019.01.002
  6. M. I. Azis, Standard-BEM solutions to two types of anisotropic-diffusion convection reaction equations with variable coefficients, Eng. Anal. Bound. Elem., 105(2019), 87-93. https://doi.org/10.1016/j.enganabound.2019.04.006
  7. M. I. Azis, I. Solekhudin I, M. H. Aswad and A. R. Jalil, Numerical simulation of two-dimensional modified Helmholtz problems for anisotropic functionally graded materials, J. King Saud Univ. Sci., 32(3)(2020), 2096-2102. https://doi.org/10.1016/j.jksus.2020.02.020
  8. S. Baja, S. Arif, Fahruddin, N. Haedar and M. I. Azis, Boundary element method solutions for steady anisotropic-diffusion convection problems of incompressible flow in quadratically graded media, J. Phys. Conf. Ser., 1341(6)(2019), 062019. https://doi.org/10.1088/1742-6596/1341/6/062019
  9. Fendoglu H, Bozkaya C and Tezer-Sezgin M, DBEM and DRBEM solutions to 2D transient convection-diffusion-reaction type equations, Eng. Anal. Bound. Elem., 93(2018), 124-134. https://doi.org/10.1016/j.enganabound.2018.04.011
  10. A. Haddade, M. I. Azis, Z. Djafar, St. N. Jabir and B. Nurwahyu, Numerical solutions to a class of scalar elliptic BVPs for anisotropic, IOP Conf. Ser.: Earth Environ. Sci., 279(1)(2019), 012007. https://doi.org/10.1088/1755-1315/279/1/012007
  11. A. Haddade, E. Syamsuddin, M. F. I. Massinai, M. I. Azis and A. I. Latunra, Numerical solutions for anisotropic-diffusion convection problems of incompressible flow in exponentially graded media, J. Phys. Conf. Ser., 1341(8)(2019), 082015. https://doi.org/10.1088/1742-6596/1341/8/082015
  12. S. Hamzah, M. I. Azis, A. Haddade and A. K. Amir, Numerical solutions to anisotropic BVPs for quadratically graded media governed by a Helmholtz equation, IOP Conf. Ser.: Mater. Sci. Eng., 619(1)(2019), 012060. https://doi.org/10.1088/1757-899X/619/1/012060
  13. S. Hamzah, A. Haddade, A. Galsan, M. I. Azis and A. M. Abdal, Numerical solution to diffusion convection-reaction equation with trigonometrically variable coefficients of incompressible flow, J. Phys. Conf. Ser., 1341(8)(2019), 082005. https://doi.org/10.1088/1742-6596/1341/8/082005
  14. H. Hassanzadeh and M. Pooladi-Darvish, Comparison of different numerical Laplace inversion methods for engineering applications, Appl. Math. Comput., 189(2007), 1966-1981. https://doi.org/10.1016/j.amc.2006.12.072
  15. E. Hernandez-Martinez, H. Puebla, F. Valdes-Parada and J. Alvarez-Ramirez, Nonstandard finite difference schemes based on Green's function formulations for reactionadiffusionaconvection systems, Chemical Engineering Science, 94(2013), 245-255. https://doi.org/10.1016/j.ces.2013.03.001
  16. St. N. Jabir, M. I. Azis, Z. Djafar and B. Nurwahyu, BEM solutions to a class of elliptic BVPs for anisotropic trigonometrically graded media, IOP Conference Series: Materials Science and Engineering, 619(1)(2019), 012059. https://doi.org/10.1088/1757-899X/619/1/012059
  17. A. R. Jalil, M. I. Azis, S. Amir, M. Bahri and S. Hamzah, Numerical simulation for anisotropic-diffusion convection reaction problems of inhomogeneous media, J. Phys. Conf. Ser., 1341(8)(2019), 082013. https://doi.org/10.1088/1742-6596/1341/8/082013
  18. N. Khaeruddin, A. Galsan, M. I. Azis, N. Ilyas and P. Paharuddin, Boundary value problems governed by Helmholtz equation for anisotropic trigonometrically graded materials: A boundary element method solution, J. Phys. Conf. Ser., 1341(6)(2019), 062007. https://doi.org/10.1088/1742-6596/1341/6/062007
  19. N. Lanafie, N. Ilyas, M. I. Azis and A. K. Amir, A class of variable coefficient elliptic equations solved using BEM, IOP Conference Series: Materials Science and Engineering, 619(1)(2019), 012025. https://doi.org/10.1088/1757-899X/619/1/012025
  20. N. Lanafie, P. Taba, A. I. Latunra, Fahruddin and M. I. Azis, On the derivation of a boundary element method for diffusion convection-reaction problems of compressible flow in exponentially inhomogeneous media, J. Phys. Conf. Ser., 1341(6)(2019), 062013. https://doi.org/10.1088/1742-6596/1341/6/062013
  21. Q. Li, Z. Chai and B. Shi, Lattice Boltzmann model for a class of convection- diffusion equations with variable coefficients, Comput. Math. Appl., 70(2015), 548-561. https://doi.org/10.1016/j.camwa.2015.05.008
  22. M. Meenal and T. I. Eldho, Two-dimensional contaminant transport modeling using mesh free point collocation method (PCM), Eng. Anal. Bound. Elem., 36(2012), 551-561. https://doi.org/10.1016/j.enganabound.2011.11.001
  23. B. Nurwahyu, B. Abdullah, A. Massinai and M. I. Azis, Numerical solutions for BVPs governed by a Helmholtz equation of anisotropic FGM, IOP Conference Series: Earth and Environmental Science, 279(1)(2019), 012008. https://doi.org/10.1088/1755-1315/279/1/012008
  24. Paharuddin, Sakka, P. Taba, S. Toaha and M. I. Azis, Numerical solutions to Helmholtz equation of anisotropic functionally graded materials, J. Phys. Conf. Ser., 1341(8)(2019), 082012. https://doi.org/10.1088/1742-6596/1341/8/082012
  25. R. Pettres and L. A. de Lacerda, Numerical analysis of an advective diffusion domain coupled with a diffusive heat source, Eng. Anal. Bound. Elem., 84(2017), 129-140. https://doi.org/10.1016/j.enganabound.2017.08.012
  26. A. Rap, L. Elliott, D. B. Ingham, D. Lesnic and X. Wen, DRBEM for Cauchy convection-diffusion problems with variable coefficients, Eng. Anal. Bound. Elem., 28(2004), 1321-1333. https://doi.org/10.1016/j.enganabound.2004.06.003
  27. N. Rauf, H. Halide, A. Haddade, D. A. Suriamihardja and M. I. Azis, A numerical study on the effect of the material's anisotropy in diffusion convection reaction problems, J. Phys. Conf. Ser., 1341(8)(2019), 082014. https://doi.org/10.1088/1742-6596/1341/8/082014
  28. J. Ravnik and L. ASkerget, A gradient free integral equation for diffusion-convection equation with variable coefficient and velocity, Eng. Anal. Bound. Elem., 37(2013), 683-690. https://doi.org/10.1016/j.enganabound.2013.01.012
  29. J. Ravnik and L. ASkerget, Integral equation formulation of an unsteady diffusion - convection equation with variable coefficient and velocity, Comput. Math. Appl., 66(2014), 2477-2488. https://doi.org/10.1016/j.camwa.2013.09.021
  30. I. Raya, Firdaus, M. I. Azis, Siswanto and A. R. Jalil, Diffusion convection-reaction equation in exponentially graded media of incompressible flow: Boundary element method solutions, J. Phys. Conf. Ser., 1341(8)(2019), 082004. https://doi.org/10.1088/1742-6596/1341/8/082004
  31. Sakka, E. Syamsuddin, B. Abdullah, M. I. Azis and A. M. A. Siddik, On the derivation of a boundary element method for steady anisotropic-diffusion convection problems of incompressible flow in trigonometrically graded media, J. Phys. Conf. Ser., 1341(6)(2019), 062020. https://doi.org/10.1088/1742-6596/1341/6/062020
  32. N. Salam, A. Haddade, D. L. Clements and M. I. Azis, A boundary element method for a class of elliptic boundary value problems of functionally graded media, Eng. Anal. Bound. Elem., 84(2017), 186-190. https://doi.org/10.1016/j.enganabound.2017.08.017
  33. N. Salam, D. A. Suriamihardja, D. Tahir, M. I. Azis and E. S. Rusdi, A boundary element method for anisotropic-diffusion convection-reaction equation in quadratically graded media of incompressible flow, J. Phys. Conf. Ser., 1341(8)(2019), 082003. https://doi.org/10.1088/1742-6596/1341/8/082003
  34. H. Stehfest, Algorithm 368: Numerical inversion of Laplace transforms [D5], Communications of the ACM, 13(1)(1970), 47-49. https://doi.org/10.1145/361953.361969
  35. S. Suryani, J. Kusuma, N. Ilyas, M. Bahri and M. I. Azis, A boundary element method solution to spatially variable coefficients diffusion convection equation of anisotropic media, J. Phys. Conf. Ser., 1341(6)(2019), 062018. https://doi.org/10.1088/1742-6596/1341/6/062018
  36. R. Syam, Fahruddin, M. I. Azis and A. Hayat, Numerical solutions to anisotropic FGM BVPs governed by the modified Helmholtz type equation, IOP Conference Series: Materials Science and Engineering, 619(1)(2019), 012061. https://doi.org/10.1088/1757-899X/619/1/012061
  37. F. Wang, W. Chen, A. Tadeu and C. G. Correia, Singular boundary method for transient convection- diffusion problems with time-dependent fundamental solution, Int. J. Heat Mass Transf., 114(2017), 1126-1134. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.007
  38. X-H. Wu, Z-J. Chang, Y-L. Lu, W-Q. Tao and S-P. Shen, An analysis of the convection-diffusion problems using meshless and mesh based methods, Eng. Anal. Bound. Elem., 36(2012), 1040-1048. https://doi.org/10.1016/j.enganabound.2011.07.014
  39. H. Yoshida and M. Nagaoka, Multiple-relaxation-time lattice Boltzmann model for the convection and anisotropic diffusion equation, J. Comput. Phys, 229(2010), 7774-7795. https://doi.org/10.1016/j.jcp.2010.06.037
  40. C. Zoppou and J. H. Knight, Analytical solution of a spatially variable coefficient advection-diffusion equation in up to three dimensions, Appl. Math. Model., 23(1999), 667-685. https://doi.org/10.1016/S0307-904X(99)00005-0