DOI QR코드

DOI QR Code

The effects of stiffener configuration on stiffened T-stubs

  • Received : 2021.09.11
  • Accepted : 2022.08.09
  • Published : 2022.08.25

Abstract

The stiffeners, also known as ribs, are utilized to increase the resistance of T-stubs. The author's previous studies showed that stiffeners can increase plastic capacity by an average of 1.71 times. A combined experimental and numerical study was undertaken to examine the effects of the stiffener configuration on the behavior of T-stubs. A total of 20 stiffened T-stubs where the shape and angle of stiffeners were considered as the main parameters were tested under monotonic loading. Rectangular, triangular and AISC types of stiffener were tested under monotonic loading. The experimental results indicated that when the height of the stiffener is equal to or higher than the length of the stiffener, the shape of the stiffener does not have an influence on the behavior. A numerical study using the finite element tool ABAQUS was carried out in order to further investigate the effects of the stiffener shapes. In this case, the height is considered less than the length of the stiffener. Moreover, the shape of the stiffeners was investigated with the different thicknesses of the stiffener. The simulation findings revealed that when the height of the stiffener is less than the length of the stiffener, the shape of the stiffener significantly affects the plastic capacity. Based on the numerical and experimental results, it is recommended to use the triangular shape of the stiffener when height is equal to or higher than the length of the stiffener while it is recommended to utilize the rectangular shape of the stiffener when height is less than the length of the stiffener.

Keywords

Acknowledgement

This study has been supported by the Department of Scientific Research Projects at Necmettin Erbakan University with the project coded 211219002.

References

  1. Abidelah, A., Bouchair, A. and Kerdal, D.E. (2012), "Experimental and analytical behavior of bolted end-plate connections with or without stiffeners", J. Construct. Steel Res., 76, 13-27. https://doi.org/10.1016/j.jcsr.2012.04.004.
  2. Abidelah, A., Bouchair, A. and Kerdal, D.E. (2014), "Influence of the flexural rigidity of the bolt on the behavior of the T-stub steel connection", Eng. Struct., 81, 181-194. https://doi.org/10.1016/j.engstruct.2014.09.041.
  3. AISC, A. (2016), Prequalified connections for special and intermediate steel moment frames for seismic applications, American Institute of Steel Construction (AISC); Chicago, USA.
  4. Anwar, G.A. (2017), "Ultimate deformation and resistance capacity of bolted T-stub connections under different loading conditions", M.Sc. Dissertation, Ceske vysoke uceni technicke v Praze, Prague.
  5. Anwar, G.A., Dinu, F. and Ahmed, M. (2019), "Numerical study on ultimate deformation and resistance capacity of bolted t-stub connection", J. Steel Struct., 19(3), 970-977. https://doi.org/10.1007/s13296-018-0186-8.
  6. Bezerra, L.M., Bonilla, J., Silva, W.A. and Matias, W.T. (2020), "Experimental and numerical studies of bolted T-stub steel connection with different flange thicknesses connected to a rigid base", Eng. Struct., 218, 110770. https://doi.org/10.1016/j.engstruct.2020.110770.
  7. Bouchair, A., Averseng, J. and Abidelah, A. (2008), "Analysis of the behaviour of stainless steel bolted connections", J. Construct. Steel Res., 64(11), 1264-1274. https://doi.org/10.1016/j.jcsr.2008.07.009.
  8. Bozkurt Mehmet, B., Kazemzadeh Azad, S. and Topkaya, C. (2018), "Low-Cycle fatigue testing of shear links and calibration of a damage law", J. Struct. Eng., 144(10), 04018189. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002192
  9. Bozkurt, M.B., Kazemzadeh Azad, S. and Topkaya, C. (2019), "Development of detachable replaceable links for eccentrically braced frames", Earthq. Eng. Struct. Dynam., 48(10), 1134-1155. https://doi.org/10.1002/eqe.3181
  10. Brown, D., Iles, D., Brettle, M., Malik, A. and Group, B.S.C. (2013), "Joints in Steel Construction: Moment-Resisting Joints to Eurocode 3", J. Steel Struct., 19(3), 970-977. https://doi.org/10.1007/s13296-018-0186-8.
  11. Chen, C., Zhang, X., Zhao, M., Lee, C.-K., Fung, T.-C. and Chiew, S.-P. (2017), "Effects of Welding on the Tensile Performance of High Strength Steel T-stub Joints", Structures, 9, 70-78. https://doi.org/10.1016/j.istruc.2016.09.008.
  12. D'Aniello, M. Cassiano, D. and Landolfo, R. (2017), "Simplified criteria for finite element modelling of European preloadable bolts", Steel Compos. Struct., 24(6) 643-658. https://doi.org/10.12989/scs.2017.24.6.643.
  13. EN 1993-1-8 (2005), Eurocode 3: Design of steel structures, Part 1.8: Design of joints, European Committee for Standardization; Brussels, Belgium.
  14. Faralli, A.C., Latour, M., Tan, P.J., Rizzano, G. and Wrobel, P. (2021), "Experimental investigation and modelling of T-stubs undergoing large displacements", J. Construct. Steel Res., 180, 106580. https://doi.org/10.1016/j.jcsr.2021.106580.
  15. Faralli, A.C., Tan, P.J., McShane, G.J. and Wrobel, P. (2020), "Deformation Maps for Bolted T-Stubs", J. Struct. Eng., 146(5), 04020045. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002584
  16. Faridmehr, I., Tahir, M.M., Osman, M.H. and Azimi, M. (2020), "Cyclic Behaviour of Fully-Rigid and Semi-Rigid Steel Beamto-Column Connections", J. Steel Struct., 20(2), 365-385. https://doi.org/10.1007/s13296-019-00290-8
  17. Fernandez-Ceniceros, J., Sanz-Garcia, A., Antonanzas-Torres, F. and Martinez-de-Pison, F.J. (2015), "A numerical-informational approach for characterising the ductile behaviour of the T-stub component. Part 1: Refined finite element model and test validation", Eng. Struct., 82, 236-248. https://doi.org/10.1016/j.engstruct.2014.06.048.
  18. Francavilla, A.B., Latour, and Rizzano, G. (2022), "Ultimate behaviour of bolted T-stubs under large displacements: A mechanical model", J. Construct. Steel Res., 195, 107355. https://doi.org/10.1016/j.jcsr.2022.107355.
  19. Francavilla, A.B., Latour, M., Piluso, V. and Rizzano, G. (2015), "Simplified finite element analysis of bolted T-stub connection components", Eng. Struct., 100, 656-664. https://doi.org/10.1016/j.engstruct.2015.06.029.
  20. Gantes, C.J. and Lemonis, M.E. (2003), "Influence of equivalent bolt length in finite element modeling of T-stub steel connections", Comput. Struct., 81(8), 595-604. https://doi.org/10.1016/S0045-7949(03)00004-X.
  21. Gil, B. and Goni, R. (2015), "T-stub behaviour under out-of-plane bending. I: Experimental research and finite element modelling", Eng. Struct., 98, 230-240. https://doi.org/10.1016/j.engstruct.2015.03.041.
  22. Gil, B., Bijlaard, F. and Bayo, E. (2015), "T-stub behavior under out-of-plane bending. II: Parametric study and analytical characterization", Eng. Struct., 98, 241-250. https://doi.org/10.1016/j.engstruct.2015.03.039.
  23. Girao Coelho Ana, M., Simoes da Silva, L. and Bijlaard Frans, S.K. (2006), "Finite-Element modeling of the nonlinear behavior of bolted T-stub connections", J. Struct. Eng., 132(6), 918-928. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:6(918).
  24. Girao Coelho, A.M., Bijlaard, F.S.K. and Simoes da Silva, L. (2004), "Experimental assessment of the ductility of extended end plate connections", Eng. Struct., 26(9), 1185-1206. https://doi.org/10.1016/j.engstruct.2000.09.001.
  25. Girao Coelho, A.M., Bijlaard, F.S.K., Gresnigt, N. and Simoes da Silva, L. (2004), "Experimental assessment of the behaviour of bolted T-stub connections made up of welded plates", J. Construct. Steel Res., 60(2), 269-311. https://doi.org/10.1016/j.jcsr.2003.08.008.
  26. Godrich, L., Wald, F., Kabelac, J. and Kurikova, M. (2019), "Design finite element model of a bolted T-stub connection component", J. Construct. Steel Res., 157, 198-206. https://doi.org/10.1016/j.jcsr.2019.02.031.
  27. Gong, Y. (2014), "Ultimate tensile deformation and strength capacities of bolted-angle connections", J. Construct. Steel Res., 100, 50-59. https://doi.org/10.1016/j.jcsr.2014.04.029.
  28. Guo, H., Liang, G., Li, Y. and Liu, Y. (2017), "Q690 high strength steel T-stub tensile behavior: Experimental research and theoretical analysis", J. Construct. Steel Res., 139, 473-483. https://doi.org/10.1016/j.jcsr.2017.10.007
  29. Kong, Z. and Kim, S.-E. (2018), "Numerical estimation for initial stiffness and ultimate moment of T-stub connections", J. Construct. Steel Res., 141, 118-131. https://doi.org/10.1016/j.jcsr.2017.11.008
  30. Kurcik, F., Bouchair, A. and Vican, J. (2008), "A probabilistic approach for a T-stub ultimate strength assessment using response-surface approximation", Periodica Polytechnica Civil Eng., 52(1), 15-22. https://doi.org/10.3311/pp.ci.2008-1.02.
  31. Liang, G., Guo, H., Liu, Y. and Li, Y. (2018), "Q690 high strength steel T-stub tensile behavior: Experimental and numerical analysis", Thin-Walled. Struct.,122, 554-571. https://doi.org/10.1016/j.tws.2017.10.042.
  32. Loureiro, A., Gutierrez, R., Reinosa, J.M. and Moreno, A. (2010), "Axial stiffness prediction of non-preloaded T-stubs: An analytical frame approach", J. Construct. Steel Res., 66(12), 1516-1522. https://doi.org/10.1016/j.jcsr.2010.06.005.
  33. Mahmoudi, F., Dolatshahi, K.M., Mahsuli, M., Nikoukalam, M.T. and Shahmohammadi, A. (2019), "Experimental study of steel moment resisting frames with shear link", J. Construct. Steel Res., 154, 197-208. https://doi.org/10.1016/j.jcsr.2018.11.027.
  34. Massimo, L., Gianvittorio, R., Aldina, S. and da Silva Luis, S. (2014), "Experimental analysis and mechanical modeling of Tstubs with four bolts per row", J. Construct. Steel Res., 101, 158-174. https://doi.org/10.1016/j.jcsr.2014.05.004.
  35. Moradi Garoosi, A., Tahamouli Roudsari, M. and Hosseini Hashemi, B. (2018), "Experimental evaluation of rigid connection with reduced section and replaceable fuse", Structures, 16, 390-404. https://doi.org/10.1016/j.istruc.2018.11.010.
  36. Murray, T.M. and Sumner, E.A. (2003), Design Guide 4: Extended end-plate moment connections: Seismic and wind applications, American Institute of Steel Construction; Chicago, USA.
  37. Nemati, N., Le Houedec, D. and Zandonini, R. (2000), "Numerical modelling of the cyclic behaviour of the basic components of steel end plate connections", Adv. Eng. Software, 31(11), 837-849. https://doi.org/10.1016/S0965-9978(00)00046-6.
  38. Nikoukalam, M.T. and Dolatshahi, K.M. (2015), "Development of structural shear fuse in moment resisting frames", J. Construct. Steel Res., 114, 349-361. https://doi.org/10.1016/j.jcsr.2015.08.008.
  39. Ozkilic, Y.O. (2020), "A new replaceable fuse for moment resisting frames: Replaceable bolted reduced beam section connections", Steel Compos. Struct., 35(3), 353-370. http://dx.doi.org/10.12989/scs.2020.35.3.353.
  40. Ozkilic, Y.O. (2021a), "Optimized stiffener detailing for shear links in eccentrically braced frames", Steel Compos. Struct., 39(1), 35-50. http://dx.doi.org/10.12989/scs.2021.39.1.035.
  41. Ozkilic, Y.O. (2021b), "The capacities of thin plated stiffened Tstubs", J. Construct. Steel Res., 186, 106912. https://doi.org/10.1016/j.jcsr.2021.106912.
  42. Ozkilic, Y.O. (2021c), "The capacities of unstiffened T-stubs with thin plates and large bolts", J. Construct. Steel Res., 186, 106908. https://doi.org/10.1016/j.jcsr.2021.106908.
  43. Ozkilic, Y.O. (2021d), "A comparative study on yield line mechanisms for four bolted extended end-plated connection", Challenge J. Struct. Mech., 7(2), https://doi.org/10.20528/cjsmec.2021.02.005.
  44. Ozkilic, Y.O. (2021e), "Investigation of the effects of bolt diameter and end-plate thickness on the capacity and failure modes of end-plated beam- to-column connections", Res. Eng. Struct. Mater., http://dx.doi.org/10.17515/resm2021.275st0315.
  45. Ozkilic, Y.O. and Topkaya, C. (2021a), "The plastic and the ultimate resistance of four-bolt extended end-plate connections", J. Construct. Steel Res., 181, 106614. https://doi.org/10.1016/j.jcsr.2021.106614.
  46. Ozkilic, Y.O. and Topkaya, C. (2021b), "Extended End-Plate Connections for Replaceable Shear Links", Eng. Struct., 240, 112385 https://doi.org/10.1016/j.engstruct.2021.112385
  47. Ozkilic, Y.O., Bozkurt, M.B. and Topkaya, C. (2021), "Midspliced end-plated replaceable links for eccentrically braced frames", Eng. Struct., 237, 112225. https://doi.org/10.1016/j.engstruct.2021.112225.
  48. Piluso, V. and Rizzano, G. (2008), "Experimental analysis and modelling of bolted T-stubs under cyclic loads", J. Construct. Steel Res., 64(6), 655-669. https://doi.org/10.1016/j.jcsr.2007.12.009.
  49. Piluso, V., Faella, C. and Rizzano, G. (2001), "Ultimate behavior of bolted T-Stubs. II: Model validation", J. Struct. Eng., 127(6), 694-704. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:6(694).
  50. Saberi, V., Gerami, M. and Kheyroddin, A. (2014), "Comparison of bolted end plate and T-stub connection sensitivity to component thickness", J. Construct. Steel Res., 98, 134-145. https://doi.org/10.1016/j.jcsr.2014.02.012.
  51. Sebbagh, H.R., Kerdal, D.E.D., Abidelah, A. and Bouchair, A. (2021), "T-stubs with two and four bolts under monotonic and cyclic loading", J. Construct. Steel Res., 178, 106486. https://doi.org/10.1016/j.jcsr.2020.106486.
  52. Seo, J., Hu, J.W. and Kim, K.H.J.M. (2017), "Analytical investigation of the cyclic behavior of smart recentering T-Stub components with superelastic SMA bolts", 7(10), 386. https://doi.org/10.3390/met7100386.
  53. Stephens, M.T., Dusicka, P. and Lewis, G. (2018), "End web stiffeners for connecting ductile replaceable links", J. Construct. Steel Res., 150, 405-414. https://doi.org/10.1016/j.jcsr.2018.08.037.
  54. Sutherland, B.C. (2016), "Analysis of Bolted Beam-Column Connections with Multiple Bolts per Row and Column Web Stiffeners", B.Sc. Dissertation, University of Arkansas, USA.
  55. Tartaglia, R., D'Aniello, M. and Landolfo, R. (2018), "The influence of rib stiffeners on the response of extended end-plate joints", J. Construct. Steel Res., 148, 669-690. https://doi.org/10.1016/j.jcsr.2018.06.025.
  56. Tartaglia, R., D'Aniello, M. and Rassati, G.A. (2019), "Proposal of AISC-compliant seismic design criteria for ductile partiallyrestrained end-plate bolted joints", J. Construct. Steel Res., 159, 364-383. https://doi.org/10.1016/j.jcsr.2019.05.006.
  57. Tartaglia, R., D'Aniello, M. and Zimbru, M. (2020), "Experimental and numerical study on the T-Stub behaviour with preloaded bolts under large deformations", Structures, 27, 2137-2155. https://doi.org/10.1016/j.istruc.2020.08.039.
  58. Tartaglia, R., D'Aniello, M., Rassati, G.A., Swanson, J.A. and Landolfo, R. (2018), "Full strength extended stiffened end-plate joints: AISC vs recent European design criteria", Eng. Struct., 159, 155-171. https://doi.org/10.1016/j.engstruct.2017.12.053.
  59. Timmers, R. (2021), "Generalized method for identifying yieldline patterns in T-stubs using discontinuity layout optimization", Eng. Struct., 244, 112802. https://doi.org/10.1016/j.engstruct.2021.112802.
  60. Vatansever, C. and Kutsal, K. (2018), "Effect of bolted splice within the plastic hinge zone on beam-to-column connection behavior", Steel Compos. Struct., 28(6), 767-778. https://doi.org/10.12989/scs.2018.28.6.767.
  61. Wang, M., Dong, K. and Liu, M. (2020), "Damage control mechanism and seismic performance of a steel moment connection with replaceable low-yield-point steel double T-stub fuses", Thin-Walled. Struct., 157, 107143. https://doi.org/10.1016/j.tws.2020.107143.
  62. Wulan, T., Wang, P., Li, Y., You, Y. and Tang, F. (2018), "Numerical investigation on strength and failure modes of thread-fixed one-side bolted T-stubs under tension", Eng. Struct., 169, 15-36. https://doi.org/10.1016/j.engstruct.2018.05.029.
  63. Yorgun, C. (2002), "Evaluation of innovative extended end-Plate moment connections under cyclic loading", Turkish J. Eng. Environ. Sci., 26(6), 483-492.
  64. Yuan, H.X., Hu, S., Du, X.X., Yang, L., Cheng, X.Y. and Theofanous, M. (2019), "Experimental behaviour of stainless steel bolted T-stub connections under monotonic loading", J. Construct. Steel Res., 152, 213-224. https://doi.org/10.1016/j.jcsr.2018.02.021.
  65. Zhang, Y., Liu, M., Ma, Q., Liu, Z., Wang, P., Ma, C. and Sun, L. (2020), "Yield line patterns of T-stubs connected by threadfixed one-side bolts under tension", J. Construct. Steel Res., 166, 105932. https://doi.org/10.1016/j.jcsr.2020.105932.
  66. Zhao, M.S., Lee, C.K. and Chiew, S.P. (2016), "Tensile behavior of high performance structural steel T-stub joints", J. Construct. Steel Res., 122, 316-325. https://doi.org/10.1016/j.jcsr.2016.04.001.
  67. Zhao, X., He, S. and Yan, S. (2021), "Full-range behaviour of Tstubs with various yield line patterns", J. Construct. Steel Res., 186, 106919. https://doi.org/10.1016/j.jcsr.2021.106919.
  68. Zhu, C., Rasmussen Kim, J.R., Yan, S. and Zhang, H. (2019), "Experimental Full-Range Behavior Assessment of Bolted Moment End-Plate Connections", J. Struct. Eng., 145(8), 04019079. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002368
  69. Zhu, X., Wang, P., Liu, M., Tuoya, W. and Hu, S. (2017), "Behaviors of one-side bolted T-stub through thread holes under tension strengthened with backing plate", J. Construct. Steel Res., 134, 53-65. https://doi.org/10.1016/j.jcsr.2017.03.010.