DOI QR코드

DOI QR Code

Nonlinear numerical model of headed shear stud anchors for composite open web steel joists

  • Yanez, Sergio J. (University of Santiago of Chile (USACH), Faculty of Engineering, Civil Engineering Department) ;
  • Dinehart, David W. (Villanova University, Department of Civil and Environmental Engineering) ;
  • Pina, Juan Carlos (University of Santiago of Chile (USACH), Faculty of Engineering, Civil Engineering Department) ;
  • Guzman, Carlos Felipe (University of Santiago of Chile (USACH), Faculty of Engineering, Civil Engineering Department)
  • Received : 2021.08.22
  • Accepted : 2022.08.02
  • Published : 2022.08.25

Abstract

Empirical relationships that capture the nonlinear behavior of headed steel shear stud anchors have been derived from standard push out tests, where the specimens are comprised of large wide flanged steel sections attached to flat concrete slabs via the anchors. However, many composite systems used in practice utilize much smaller steel members and/or steel decking as part of the slab system. Composite open web steel joist systems generally include both of these elements and consequently the nonlinear performance ofthe anchor is not accurately represented by existing models. In this paper, a new empirical relation is presented for open web steel joist systems based on experimental results from a modified push out test that more realistically represent a composite open web steel joist system. The methodology for obtaining the proposed nonlinear function where the response of the system is characterized by two parameters(α and β) is presented. The two-step process for obtaining the two parameters is described and the empirical relation is calibrated with the experimental data. In comparison with existing expressions, the new proposal herein more accurately predicts the high initialstiffness of the system and overall nonlinear system performance.

Keywords

Acknowledgement

Sergio J. Yanez acknowledges the financial support from Universidad de Santiago de Chile, USACH, through project DICYT N°052018YC, Direccion de Investigacion Cientifica y Tecnologica, Dicyt.

References

  1. Ahmed, I.M., Tsavdaridis, K.D., Neysari, F. and Forth, J. (2018), "Push-out tests for a novel pre fabricated steel-concrete composite shallow flooring system", Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018, Universitat Politecnica Valencia, URL http://ocs.editorial.upv.es/index.php/ASCCS/ASCCS2018/paper/view/6925.
  2. AISI S923-20 (2020), Test Standard for Determining the Strength and Stiffness of Shear Connection in Composite Members, American Iron and Steel Institute (AISI), Washington, DC.
  3. AISI/AISC 360-05 (2005), Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL., American Institute of Steel Construction, Chicago, IL.
  4. Angrisani, L., Capriglione, D., Cerro, G., Ferrigno, L. and Miele, G. (2016), "On employing a savitzky-golay filtering stage to improve performance of spectrum sensing in CR applications concerning VDSA approach", Metrol. Measure. Syst., 23(2), 295-308, URL http://journals.pan.pl/dlibra/publication/104515/edition/90416/content. 104515/edition/90416/content
  5. Aribert, J.M. (1990), "Dimensionnement de poutres mixtes en connection partielle", in "Mixed struc tures including new materials", IABSE Symposium, Brussels, 215-220.
  6. Aribert, J.M. and Labib, A.G. (1982), "Modele de calcul elastoplastique de poutres mixtes connexion partielle", Constr Met, (4).
  7. Azami, H., Mohammadi, K. and Bozorgtabar, B. (2012), An Improved Signal Segmentation Using Moving Average and Savitzky-Golay Filter, http://www.scirp.org/journal/PaperInformation.aspx?PaperID=17638, Scientific Research Publishing.
  8. Ban, H. and Bradford, M.A. (2013), "Flexural behaviour of composite beams with high strength steel", Eng. Struct., 56, 1130-1141, https://www.sciencedirect.com/science/article/pii/S0141029613003234. 1029613003234
  9. Bradford, M.A., Filonov, A. and Hogan, T.J. (2006a), "Push testing procedure for composite beams with deep trapezoidal slabs", Proceedings of the Eleventh International Conference on Metal Structures, Rzeszow, Poland.
  10. Bradford, M.A., Filonov, A., Hogan, T.J., Ranzi, G. and Uy, B. (2006b), "Strength and ductility of shear connection in composite T-beams", Proceedings of the 8th International Conference on Steel, Space & Composite Structures, 15-17 May 2006, Kuala Lumpur, Malaysia, https://researchdirect.westernsydney.edu.au/islandora/object/uws3A5501/, iSBN: 9789810555597.
  11. Buttry, K.E. (1965), Behavior of Stud Shear Connectors in Lightweight and Normal-Weight Concrete, Ph.D. Dissertation, University of Missouri, Columbia.
  12. Candan, C . and Inan, H. (2014), "A unified framework for derivation and implementation of Savitzky-Golay filters", Signal Processing, 104, 203-211. https://www.sciencedirect.com/science/article/pii/S016516841400173X. https://doi.org/10.1016/j.sigpro.2014.04.016
  13. Comite Europeen de Normalisation (CEN) (2005), Eurocode 4. Design of Composite Steel and Concrete Structures. Part 1.1: General Rules and Rules for Buildings, European Committee for Standardization, Brussels, Belgium.
  14. Easterling, W., Gibbings, D. and Murray, T. (1993), "Strength of Shear Studs in Steel Deck on Composite Beams and Joists", AISC Engineering Journal, 30.
  15. Gattesco, N. and Giuriani, E. (1996), "Experimental study on stud shear connectors subjected to cyclic loading", J. Construct. Steel Res., 38(1), 1-21, https://www.sciencedirect.com/science/article/pii/0143974X96000077. https://doi.org/10.1016/0143-974X(96)00007-7
  16. Guin, J.L., Ortega, E., Garca-Antn, J. and Prez-Herranz, V. (2007), "Moving average and savitzki golay smoothing filters using mathcad", International Conference on Engineering Education ICEE.
  17. He, J., Lin, Z., Liu, Y., Xu, X., Xin, H. and Wang, S. (2020), "Shear stiffness of headed studs on structural behaviors of steelconcrete composite girders", Steel Compos. Struct., 36(5), 553-568. https://doi.org/10.12989/SCS.2020.36.5.553.
  18. Hicks, S.J. and Smith, A.L. (2014), "Stud shear connectors in composite beams that support slabs with profiled steel sheeting", Struct. Eng. Int., 24(2), 246-253. https://doi.org/10.2749/101686614X13830790993122.
  19. Johnson, R. and Oehlers, D. (1981), "Analysis and design for longitudinal shear in composite t beams.", Proceedings of the Institution of Civil Engineers, 71(4), 989-1021. https://www.icevirtuallibrary.com/doi/abs/10.1680/iicep.1981.1.
  20. Johnson, R.P. (2012), Designers' Guide to Eurocode 4: Design of Composite Steel and Concrete Structures, Designers' Guide to Eurocodes, https://www.icevirtuallibrary.com/doi/abs/10.1680/dcscs.41738.
  21. Johnson, R.P. and Molenstra, N. (1991), "Partial shear connection in composite beams for build ings.", Proceedings of the Institution of Civil Engineers, 91(4), 679-704, https://www.icevirtuallibrary.com/doi/abs/10.1680/iicep.1991.17485.
  22. Kim, B., Wright, H.D. and Cairns, R. (2001), "The behaviour of through-deck welded shear connectors: an experimental and numerical study", J. Construct. Steel Res., 57(12), 1359-1380, https://www.sciencedirect.com/science/article/pii/S0143974X01000372. 1000372
  23. Kuhlman, G., Keymeulen, D., Buehler, M. and Kounaves, S. (2004), "Detecting heavy metals in solution using electronictongue 3 REDOX water quality sensors", 2004 IEEE Aerospace Con ference Proceedings (IEEE Cat. No.04TH8720), 363-378, http://ieeexplore.ieee.org/document/1367620/.
  24. Lee, P.G., Shim, C.S. and Chang, S.P. (2005), "Static and fatigue behavior of large stud shear connectors for steelconcrete composite bridges", J. Construct. Steel Res., 61(9), 1270-1285. https://www.sciencedirect.com/science/article/pii/S0143974X05000210. https://doi.org/10.1016/j.jcsr.2005.01.007
  25. Li, Q. (2013), "Noise reduction of accelerometer signal with singular value decomposition and savitzky-golay filter", J. Inform. Comput. Sci., 10(15), 4783-4793. http://www.joics.com/publishedpapers/201310154783 4793.pdf. 101547834793.pdf
  26. Liang, Q.Q., Uy, B., Bradford, M.A. and Ronagh, H.R. (2005), "Strength analysis of steel concrete composite beams in combined bending and shear", J. Struct. Eng., 131(10), 1593-1600, URL https://ascelibrary.org/doi/abs/10.1061/(asce)0733-9445(2005)131: 10(1593).
  27. Liu, Q., Liu, L., Chen, H., Zhou, Y. and Lei, X. (2020a), "Prediction of vibration and noise from steel/composite bridges based on receptance and statistical energy analysis", Steel Compos. Struct., 37(3), 291-306. https://doi.org/10.12989/SCS.2020.37.3.291.
  28. Liu, R., Feng, Z., Ye, H. and Liu, Y. (2020b), "Stress redistribution of headed stud connectors subjected to constant shear force", Int. J. Steel Struct., 20(2), 436-451. https://doi.org/10.1007/s13296-019-00295-3.
  29. Liu, Y., Dang, B., Li, Y., Lin, H. and Ma, H. (2016), "Applications of savitzky-golay filter for seismic random noise reduction", Acta Geophysica, 64(1), 101-124. http://link.springer. com/10.1515/acgeo-2015-0062.
  30. Loh, H.Y., Uy, B. and Bradford, M.A. (2006), "The effects of partial shear connection in compos ite flush end plate joints Part IIAnalytical study and design appraisal", J. Construct. Steel Res., 62(4), 391-412. https://www.sciencedirect.com/science/article/pii/S0143974X05001331. https://doi.org/10.1016/j.jcsr.2005.07.010
  31. Lorenc, W. and Kubica, E. (2006), "Behavior of composite beams prestressed with external tendons: Experimental study", J. Construct. Steel Res., 62(12), 1353-1366, https://www.sciencedirect.com/science/article/pii/S0143974X06000186. https://doi.org/10.1016/j.jcsr.2006.01.007
  32. Madden, H.H. (2002), "Comments on the Savitzky-Golay convolution method for least-squares fit smoothing and differentiation of digital data", https://pubs.acs.org/doi/pdf/10.1021/ac50031a048.
  33. Maslak, M. and Domanski, T. (2018), "Design value of a headed stud shear resistance in composite steel concrete beams probability-based approach to evaluation", in "Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018", Universitat Politcnica Valncia, http://ocs.editorial.upv.es/index.php/ASCCS/ASCCS2018/paper/view/6950.
  34. Mendes, P.J.D., Barros, J.A.O., Sena-Cruz, J.M. and Taheri, M. (2011), "Development of a pedes trian bridge with GFRP profiles and fiber reinforced self-compacting concrete deck", Compos. Struct., 93(11), 2969-2982. https://www.sciencedirect.com/science/article/pii/S0263822311001760. 1001760
  35. Mirambell, E., Bonilla, J., Bezerra, L.M. and Clero, B. (2021), "Numerical study on the deflections of steel-concrete composite beams with partial interaction", Steel Compos. Struct., 38(1), 67-78. https://doi.org/10.12989/SCS.2021.38.1.067.
  36. Nellinger, S., Odenbreit, C., Obiala, R. and Lawson, M. (2017), "Influence of transverse loading onto push-out tests with deep steel decking", J. Construct. Steel Res., 128, 335-353. https://www.sciencedirect.com/science/article/pii/S0143974X16302656. https://doi.org/10.1016/j.jcsr.2016.08.021
  37. Nguyen, H., Mutsuyoshi, H. and Zatar, W. (2015), "Hybrid FRPUHPFRC composite girders: Part 1 Experimental and numerical approach", Compos. Struct., 125, 631-652. https://www.sciencedirect.com/science/article/pii/S0263822314005753. https://doi.org/10.1016/j.compstruct.2014.10.038
  38. Nie, J., Fan, J. and Cai, C.S. (2004), "Stiffness and deflection of steel concrete composite beams under negative bending", J. Struct. Eng., 130(11), 1842-1851. http://ascelibrary.org/doi/10.1061/(asce)07339445(2004)130:11(1842).
  39. Oehlers, D.J. and Johnson, R.P. (1987), "The strength of stud shear connections in composite beams", Struct. Eng., 65(2), 44-48.
  40. Oehlers, D.J., Nguyen, N.T., Ahmed, M. and Bradford, M.A. (1997), "Partial interaction in composite steel and concrete beams with full shear connection", J. Construct. Steel Res., 41(2), 235-248. https://www.sciencedirect.com/science/article/pii/S0143974X97808929. https://doi.org/10.1016/S0143-974X(97)80892-9
  41. Ollgaard, J.G., Slutter, R.G. and Fisher, J.W. (1971), "Shear strength of stud connectors in lightweight and normal weight concrete", AISC Eng'g Jr., 71(10), http://preserve.lehigh. edu/engr-civil-environmental-fritz-lab-reports/2010.
  42. Quan, Q. and Cai, K.Y. (2012), "Time-domain analysis of the SavitzkyGolay filters", Digi tal Signal Processing, 22(2), 238-245. https://www.sciencedirect.com/science/article/pii/S1051200411001904. 1051200411001904
  43. Queiroz, F.D., Vellasco, P.C.G.S. and Nethercot, D.A. (2007), "Finite element modelling of composite beams with full and partial shear connection", J. Construct. Steel Res., 63(4), 505-521. https://www.sciencedirect.com/science/article/pii/S0143974X06001180. https://doi.org/10.1016/j.jcsr.2006.06.003
  44. Qureshi, J. and Lam, D. (2012), "Behaviour of Headed Shear Stud in Composite Beams with Profiled Metal Decking", Adv. Struct. Eng., 15(9), 1547-1558. https://doi.org/10. 1260/1369-4332.15.9.1547, publisher: SAGE Publications Ltd STM. https://doi.org/10.1260/1369-4332.15.9.1547
  45. Qureshi, J. and Lam, D. (2020), "Experimental investigation of shear connector behaviour in composite beams with metal decking", Steel Compos. Struct., 35(4), 475-494. https://doi.org/10.12989/SCS.2020.35.4.475.
  46. Ranzi, G., Bradford, M.A., Ansourian, P., Filonov, A., Rasmussen, K.J.R., Hogan, T.J. and Uy, B. (2009), "Full-scale tests on composite steelconcrete beams with steel trapezoidal decking", J. Construct. Steel Res., 65(7), 1490-1506. https://www.sciencedirect.com/science/article/pii/S0143974X0900056X. https://doi.org/10.1016/j.jcsr.2009.03.006
  47. Shim, C.S., Lee, P.G. and Yoon, T.Y. (2004), "Static behavior of large stud shear connectors", Eng. Struct., 26(12), 1853-1860. URL https://www.sciencedirect.com/science/article/pii/S0141029604002500. 1029604002500
  48. Sjaarda, M., Walbridge, S. and West, J.S. (2018), "Assessment of shear connection through composite beam modeling", Transport. Res. Record, 2672(41), 177-185. https://doi.org/10.1177/0361198118781685.
  49. SJI (2007), Composite Steel Joist Catalog, First Edition, Steel Joist Institute, Myrtle Beach, SC, Steel Joist Institute, Myrtle Beach, SC.
  50. Smyth, G.K. (2006), "Nonlinear regression", Encyclopedia Environ. Amer. Cancer Soc.. https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470057339.van017.
  51. Spremic, M., Markovic, Z., Veljkovic, M. and Budjevac, D. (2013), "Push-out experiments of headed shear studs in group arrangements", Adv. Steel Construct., 9(2), 139-160.
  52. Sublett, C.N. (1991), Strength of Welded Headed Studs in Ribbed Metal Deck on Composite Joists, Master Thesis. Virginia Tech.
  53. Sun, Q., Nie, X., Denavit, M.D., Fan, J. and Liu, W. (2019), "Monotonic and cyclic behavior of headed steel stud anchors welded through profiled steel deck", J. Construct. Steel Res., 157, 121-131. https://www.sciencedirect.com/science/article/pii/S0143974X18307466. https://doi.org/10.1016/j.jcsr.2019.01.022
  54. Tahmasebinia, F. and Ranzi, G. (2011), "Three-dimensional FE modelling of simply-supported and continuous composite steelconcrete beams", Procedia Eng., 14, 434-441. https: //www.sciencedirect.com/science/article/pii/S1877705811011313. 1011313
  55. Titoum, M., Tehami, M., Achour, B. and Jaspart, J.P. (2008), "Analysis of semi-continuous composite beams with partial shear connection using 2-D finite element approach", Asian J. Appl. Sci., 1(3), https://orbi.uliege.be/handle/2268/26143.
  56. Uy, B. (2006), "Advances in steel & composite structures in Australia: Applications, design and research", Proceedings of the International Symposium On Advances In Steel And Composite Structures, May, Singapore. https://researchdirect.westernsydney.edu.au/islandora/object/uws3A7510/, iSBN: 9789810556600.
  57. Uy, B. (2018), "Applications, behaviour and construction of high performance steels in steel-concrete composite structures", Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018, Universitat Politcnica Valncia, http://ocs.editorial.upv.es/index.php/ASCCS/ASCCS2018/paper/view/8375.
  58. Uy, B. and Bradford, M.A. (1995), "Ductility of profiled composite beams. part I: Experimental study", J. Struct. Eng., 121(5), 876-882, https://ascelibrary.org/doi/abs/10.1061/(asce)0733-9445(1995)121:5(876).
  59. Wang, A.J. and Chung, K.F. (2008), "Advanced finite element modelling of perforated composite beams with flexible shear connectors", Eng. Struct., 30(10), 2724-2738. https://www.sciencedirect.com/science/article/pii/S0141029608000837. 1029608000837
  60. Wang, J., Qi, J., Tong, T., Xu, Q. and Xiu, H. (2019), "Static behavior of large stud shear connectors in steel-UHPC composite structures", Eng. Struct., 178, 534-542. https://linkinghub.elsevier.com/retrieve/pii/S0141029618314214. 1029618314214
  61. Wang, J., Xu, Q., Yao, Y., Qi, J. and Xiu, H. (2018), "Static behavior of grouped large headed stud-UHPC shear connectors in composite structures", Compos. Struct., 206, 202-214. https://linkinghub.elsevier.com/retrieve/pii/S0263822318311371. https://doi.org/10.1016/j.compstruct.2018.08.038
  62. Xu, C., Sugiura, K., Wu, C. and Su, Q. (2012), "Parametrical static analysis on group studs with typical push-out tests", J. Construct. Steel Res., 72, 84-96. https://www.sciencedirect.com/science/article/pii/S0143974X11002963. 1002963
  63. Xue, W., Ding, M., Wang, H. and Luo, Z. (2008), "Static behavior and theoretical model of stud shear connectors", J. Bridge Eng., 13(6), 623-634. https://ascelibrary.org/doi/abs/10.1061/(asce)1084-0702(2008)13:6(623).
  64. Yanez, S.J., Dinehart, D.W. and Santhanam, S. (2017), "Composite steel joist analysis using exper imental stiffness factor from push-out tests", J. Construct. Steel Res., 137, 1-7. https://www.sciencedirect.com/science/article/pii/S0143974X16306125. https://doi.org/10.1016/j.jcsr.2017.04.001
  65. Zuppa, M., Distante, C., Siciliano, P. and Persaud, K.C. (2004), "Drift counteraction with multiple self-organising maps for an electronic nose", Sensors Actuators B: Chemical, 98(2), 305-317. https://www.sciencedirect.com/science/article/pii/S0925400503008086. https://doi.org/10.1016/j.snb.2003.10.029