DOI QR코드

DOI QR Code

Nonlinear thermal vibration of FGM beams resting on nonlinear viscoelastic foundation

  • Alimoradzadeh, M. (Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University) ;
  • Akbas, S.D. (Department of Civil Engineering, Bursa Technical University)
  • Received : 2021.08.22
  • Accepted : 2022.08.02
  • Published : 2022.08.25

Abstract

Nonlinear free vibration analysis of a functionally graded beam resting on the nonlinear viscoelastic foundation is studied with uniform temperature rising. The non-linear strain-displacement relationship is considered in the finite strain theory. The governing nonlinear dynamic equation is derived based on the finite strain theory with using of Hamilton's principle. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The influences of temperature rising, material distribution parameter, nonlinear viscoelastic foundation parameters on the nonlinear free response and phase trajectory are investigated. In this paper, it is aimed that a contribution to the literature for nonlinear thermal vibration solutions of a functionally graded beam resting on the nonlinear viscoelastic foundation by using of multiple time scale method.

Keywords

References

  1. Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489.
  2. Akbas, S.D. (2013a), "Geometrically nonlinear static analysis of edge cracked Timoshenko beams composed of functionally graded material", Mathem. Prob. Eng., 2013. https://doi.org/10.1155/2013/871815.
  3. Akbas, S.D. (2013b), "Free vibration characteristics of edge cracked functionally graded beams by using finite element method", Int. J. Eng. Trends Technol., 4(10), 4590-4597.
  4. Akbas, S.D. (2014), "Free vibration of axially functionally graded beams in thermal environment", Int. J. Eng. Appl. Sci., 6(3), 37-51. https://doi.org/10.24107/ijeas.251224.
  5. Akbas, S.D. (2016), "Static analysis of a nano plate by using generalized differential quadrature method", Int. J. Eng. Appl. Sci., 8(2), 30-39. https://doi.org/10.24107/ijeas.252143.
  6. Akbas, S.D. (2017), "Stability of a non-homogenous porous plate by using generalized differantial quadrature method", Int. J. Eng. Appl. Sci., 9(2), 147-155. https://doi.org/10.24107/ijeas.322375.
  7. Akbas, S.D. (2018a), "Geometrically nonlinear analysis of functionally graded porous beams", Wind Struct., 27(1), 59-70. https://doi.org/10.12989/was.2018.27.1.059.
  8. Akbas, S.D. (2018b), "Large deflection analysis of a fiber reinforced composite beam", Steel Compos. Struct., 27(5), 567-576. http://doi.org/10.12989/scs.2018.27.5.567.
  9. Akbas, S.D. (2018c), "Thermal post-buckling analysis of a laminated composite beam", Strut. Eng. Mech., 67(4), 337-346. http://dx.doi.org/10.12989/sem.2018.67.4.337.
  10. Akbas, S.D. (2018d), "Investigation of static and vibration behaviors of a functionally graded orthotropic beam", Balikesir universitesi Fen Bilimleri Enstitusu Dergisi, 1-14. https://doi.org/10.25092/baunfbed.343227.
  11. Akbas, S.D. (2019a), "Hygro-thermal nonlinear analysis of a functionally graded beam", J. Appl. Comput. Mech., 5(2), 477-485. http://dx.doi.org/10.22055/JACM.2018.26819.1360.
  12. Akbas, S.D. (2019b), "Hygro-thermal post-buckling analysis of a functionally graded beam", Coupl. Syst. Mech., 8(5), 459-471. http://dx.doi.org/10.12989/csm.2019.8.5.459.
  13. Akbas, S.D. (2019c), "Hygrothermal post-buckling analysis of laminated composite beams", Int. J. Appl. Mech., 11(01), 1950009. https://doi.org/10.1142/S1758825119500091.
  14. Akbas, S.D. (2019d), "Nonlinear static analysis of laminated composite beams under hygro-thermal effect", Struct. Eng. Mech., 72(4), 433-441. http://dx.doi.org/10.12989/sem.2019.72.4.433.
  15. Akbas, S.D. (2019e), "Post-buckling analysis of a fiber reinforced composite beam with crack", Eng. Fracture Mech., 212, 70-80. https://doi.org/10.1016/j.engfracmech.2019.03.007.
  16. Akbas, S.D. (2019f), "Nonlinear behavior of fiber reinforced cracked composite beams", Steel Compos. Struct., 30(4), 327-336. https://doi.org/10.12989/scs.2019.30.4.327.
  17. Akbas, S.D. (2019g), "Axially forced vibration analysis of cracked a nanorod", J. Comput. Appl. Mech., https://doi.org/10.22059/JCAMECH.2019.281285.392.
  18. Akbas, S.D. (2020a), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277-282. https://doi.org/10.12989/anr.2020.8.4.277.
  19. Akbas, S.D. (2020b), "Geometrically nonlinear analysis of axially functionally graded beams by using finite element method", J. Comput. Appl. Mech., 51(2), 411-416. https://doi.org/10.22059/JCAMECH.2020.309019.548.
  20. Akbas, S.D. (2020c), "Dynamic responses of laminated beams under a moving load in thermal environment", Steel Compos. Struct., 35(6), 729-737. https://doi.org/10.12989/scs.2020.35.6.729.
  21. Akbas, S.D. (2020d), "Dynamic analysis of a laminated composite beam under harmonic load", Coupl. Syst. Mech., http://doi.org/10.12989/csm.2020.9.6.563.
  22. Akbas, S.D. (2021a), "Forced vibration responses of axially functionally graded beams by using ritz method", J. Appl. Comput. Mech., 7(1), 109-115. http://dx.doi.org/10.22055/JACM.2020.34865.2491.
  23. Akbas, S.D. (2021b), "Dynamic analysis of axially functionally graded porous beams under a moving load", Steel Compos. Struct., 39(6), 811-821. https://doi.org/10.12989/scs.2021.39.6.811.
  24. Akbas, S.D. (2021c), "Forced vibration analysis of a fiber reinforced composite beam", Adv. Mater. Res., 10(1), 57-66. https://doi.org/10.12989/amr.2021.10.1.057.
  25. Akbas, S.D. (2022), "Moving-load dynamic analysis of AFG beams under thermal effect", Steel Compos. Struct., 42(5), 649-655. https://doi.org/10.12989/scs.2022.42.5.649.
  26. Akbas, S.D. and Kocaturk, T. (2012), "Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties under uniform thermal loading", Struct. Eng. Mech., 44(1), 109-125. https://doi.org/10.12989/sem.2012.44.1.109.
  27. Akbas, S.D. and Kocaturk, T. (2013), "Post-buckling analysis of functionally graded three-dimensional beams under the influence of temperature", J. Thermal Stresses, 36(12), 1233-1254. https://doi.org/10.1080/01495739.2013.788397.
  28. Alimoradzadeh, M., Salehi, M. and Esfarjani, S.M. (2019), "Nonlinear dynamic response of an axially functionally graded (AFG) beam resting on nonlinear elastic foundation subjected to moving load", Nonlinear Eng., 8(1), 250-260. https://doi.org/10.1515/nleng-2018-0051.
  29. Alimoradzadeh, M., Salehi, M. and Esfarjani, S.M. (2020), "Nonlinear vibration analysis of axially functionally graded microbeams based on nonlinear elastic foundation using modified couple stress theory", Periodica Polytechnica Mech. Eng., 64(2), 97-108. https://doi.org/10.3311/PPme.11684.
  30. Alimoradzadeh, M., Akbas, S.D. and Esfrajani, S.M. (2021), "Nonlinear dynamic and stability of a beam resting on the nonlinear elastic foundation under thermal effect based on the finite strain theory", Struct. Eng. Mech., 80(3), 275-284. https://doi.org/10.12989/sem.2021.80.3.275.
  31. Alimoradzadeh M. and Akbas S.D. (2021), "Superharmonic and subharmonic resonances of atomic force microscope subjected to crack failure mode based on the modified couple stress theory", Europ. Phys. J. Plus, 136, 536. https://doi.org/10.1140/epjp/s13360-021-01539-0.
  32. Alimoradzadeh M. and Akbas S.D. (2022a), "Nonlinear dynamic responses of cracked atomic force microscopes", Struct. Eng. Mech., 82(6), 747-756. https://doi.org/10.12989/sem.2022.82.6.747.
  33. Alimoradzadeh M. and Akbas S.D. (2022b), "Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment", Struct. Eng. Mech., 81(6), 705-714. https://doi.org/10.12989/sem.2022.81.6.705.
  34. Alimoradzadeh M. and Akbas S.D. (2022c), "Superharmonic and subharmonic resonances of a carbon nanotube-reinforced composite beam", Adv. Nano Res., 12(4), 353-363. https://doi.org/10.12989/anr.2022.12.4.353.
  35. Ansari, M., Esmailzadeh, E. and Younesian, D. (2010), "Internalexternal resonance of beams on non-linear viscoelastic foundation traversed by moving load", Nonlinear Dyn., 61(1), 163-182. https://doi.org/10.1007/s11071-009-9639-0.
  36. Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Mathem. Modelling, 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006.
  37. Arshid, E., Khorasani, M., Soleimani-Javid, Z., Amir, S. and Tounsi, A. (2021), "Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01382-y.
  38. Belbachir, N., Bourada, M., Draiche, K., Tounsi, A., Bourada, F., Bousahla, A.A. and Mahmoud, S.R. (2020), "Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory", Smart Struct. Syst., 25(4), 409-422. https://doi.org/10.12989/sss.2020.25.4.409.
  39. Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A., Bourada, F. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., 34(5), 643-655. https://doi.org/10.12989/scs.2020.34.5.643.
  40. Bellifa, H., Selim, M.M., Chikh, A., Bousahla, A.A., Bourada, F., Tounsi, A. and Tounsi, A. (2021), "Influence of porosity on thermal buckling behavior of functionally graded beams", Smart Struct. Syst., 27(4), 719-728. https://doi.org/10.12989/sss.2021.27.4.719.
  41. Benahmed, A., Fahsi, B., Benzair, A., Zidour, M., Bourada, F. and Tounsi, A. (2019), "Critical buckling of functionally graded nanoscale beam with porosities using nonlocal higher-order shear deformation", Struct. Eng. Mech., 69(4), 457-466. https://doi.org/10.12989/sem.2019.69.4.457.
  42. Bendenia, N., Zidour, M., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H. and Tounsi, A. (2020), "Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation", Comput. 26(3), 213-226. http://dx.doi.org/10.12989/cac.2020.26.3.213.
  43. Bourada, F., Bousahla, A.A., Tounsi, A., Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation", Comput. Concrete, 25(6), 485-495. https://doi.org/10.12989/cac.2020.25.6.485.
  44. Chen, X.L. and Liew, K.M. (2004), "Buckling of rectangular functionally graded material plates subjected to nonlinearly distributed in-plane edge loads", Smart Mater. Struct., 13(6), 1430. https://doi.org/10.1088/0964-1726/13/6/014.
  45. Chen, Y., Fu, Y., Zhong, J. and Tao, C. (2017), "Nonlinear dynamic responses of fiber-metal laminated beam subjected to moving harmonic loads resting on tensionless elastic foundation", Compos. Part B: Eng., 131, 253-259. https://doi.org/10.1016/j.compositesb.2017.07.051.
  46. Chikr, S.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E.A. and Tounsi, A. (2020), "A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach", Geomech. Eng., 21(5), 471-487. https://doi.org/10.12989/gae.2020.21.5.471.
  47. Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
  48. Ebrahimi, F. and Jafari, A. (2016), "A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities", Journal of Engineering, 2016. http://dx.doi.org/10.1155/2016/9561504.
  49. Fazzolari, F.A. (2018), "Generalized exponential, polynomial and trigonometric theories for vibration and stability analysis of porous FG sandwich beams resting on elastic foundations", Compos. Part B: Eng., 136, 254-271. https://doi.org/10.1016/j.compositesb.2017.10.022.
  50. Ghayesh, M.H. (2018a), "Dynamics of functionally graded viscoelastic microbeams", Int. J. Eng. Sci., 124, 115-131. https://doi.org/10.1016/j.ijengsci.2017.11.004.
  51. Ghayesh, M.H. (2018b), "Nonlinear vibrations of axially functionally graded Timoshenko tapered beams", J. Comput. Nonlinear Dyn., 13(4), 041002. https://doi.org/10.1115/1.4039191.
  52. Ghayesh, M.H. (2018c), "Nonlinear dynamics of multilayered microplates", J. Comput. Nonlinear Dyn., 13(2), 021006. https://doi.org/10.1115/1.4037596.
  53. Ghayesh, M.H. (2019a), "Nonlinear oscillations of FG cantilevers", Appl. Acoustics, 145, 393-398. https://doi.org/10.1016/j.apacoust.2018.08.014.
  54. Ghayesh, M.H. (2019b), "Asymmetric viscoelastic nonlinear vibrations of imperfect AFG beams", Appl. Acoustics, 154, 121-128. https://doi.org/10.1016/j.apacoust.2019.03.022.
  55. Ghayesh, M.H. (2019c), "Viscoelastic mechanics of Timoshenko functionally graded imperfect microbeams", Compos. Struct., 225, 110974. https://doi.org/10.1016/j.compstruct.2019.110974.
  56. Ghayesh, M.H. (2019d), "Mechanics of viscoelastic functionally graded microcantilevers", Europ. J. Mech.-A/Solids, 73, 492-499. https://doi.org/10.1016/j.euromechsol.2018.09.001.
  57. Ghayesh, M.H. (2019e), "Viscoelastic dynamics of axially FG microbeams", Int. J. Eng. Sci., 135, 75-85. https://doi.org/10.1016/j.ijengsci.2018.10.005.
  58. Guellil, M., Saidi, H., Bourada, F., Bousahla, A.A., Tounsi, A., Al-Zahrani, M.M. and Mahmoud, S.R. (2021), "Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation", Steel Compos. Struct., 38(1), 1-15. http://dx.doi.org/10.12989/scs.2021.38.1.001.
  59. Jouneghani, F.Z., Dimitri, R. and Tornabene, F. (2018), "Structural response of porous FG nanobeams under hygro-thermomechanical loadings", Compos. Part B: Eng., 152, 71-78. https://doi.org/10.1016/j.compositesb.2018.06.023.
  60. Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Bedia, E.A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
  61. Kar, V.R. and Panda, S.K. (2016), "Nonlinear free vibration of functionally graded doubly curved shear deformable panels using finite element method", J. Vib. Control, 22(7), 1935-1949. https://doi.org/10.1177/1077546314545102.
  62. Kar, V.R. and Panda, S.K. (2017), "Large-amplitude vibration of functionally graded doubly-curved panels under heat conduction", AIAA J., 55(12), 4376-4386. https://doi.org/10.2514/1.J055878.
  63. Kirlangic, O. and Akbas, S.D. (2020), "Comparison study between layered and functionally graded composite beams for static deflection and stress analyses", J. Comput. Appl. Mech., 51(2), 294-301. https://doi.org/10.22059/JCAMECH.2020.296319.473.
  64. Kirlangic, O. and Akbas, S.D. (2021), "Dynamic responses of functionally graded and layered composite beams", Smart Struct. Syst., 27(1), 115-122. https://doi.org/10.12989/sss.2021.27.1.115.
  65. Kocaturk, T. and Akbas, S.D. (2010), "Geometrically non-linear static analysis of a simply supported beam made of hyperelastic material", Struct. Eng. Mech., 35(6), 677-697. https://doi.org/10.12989/sem.2010.35.6.677.
  66. Kocaturk, T. and Akbas, S.D. (2011), "Post-buckling analysis of Timoshenko beams with various boundary conditions under nonuniform thermal loading", Struct. Eng. Mech., 40(3), 347-371. https://doi.org/10.12989/sem.2011.40.3.347.
  67. Kocaturk, T. and Akbas, S.D. (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., 46(3), 417-431. https://doi.org/10.12989/sem.2013.46.3.417.
  68. Li, Y.H., Wang, L. and Yang, E.C. (2018), "Nonlinear dynamic responses of an axially moving laminated beam subjected to both blast and thermal loads", Int. J. Non-Linear Mech., 101, 56-67. https://doi.org/10.1016/j.ijnonlinmec.2018.02.007.
  69. Malekzadeh, P. and Monajjemzadeh, S.M. (2016), "Dynamic response of functionally graded beams in a thermal environment under a moving load", Mech. Adv. Mater. Struct., 23(3), 248-258. https://doi.org/10.1080/15376494.2014.949930.
  70. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018), "Nonlinear frequency responses of functionally graded carbon nanotubereinforced sandwich curved panel under uniform temperature field", Int. J. Appl. Mech., 10(03), 1850028. https://doi.org/10.1142/S175882511850028X.
  71. Merazka, B., Bouhadra, A., Menasria, A., Selim, M.M., Bousahla, A.A., Bourada, F. and Al-Zahrani, M.M. (2021), "Hygrothermo-mechanical bending response of FG plates resting on elastic foundations", Steel Compos. Struct., 39(5), 631-643. http://dx.doi.org/10.12989/scs.2021.39.5.631.
  72. Mudhaffar, I.M., Tounsi, A., Chikh, A., Al-Osta, M.A., AlZahrani, M.M. and Al-Dulaijan, S.U. (2021), "Hygro-thermomechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation", Struct., 33, 2177-2189. https://doi.org/10.1016/j.istruc.2021.05.090.
  73. Nayfeh, A.H., Mook, D.T. and Holmes, P. (1980), "Nonlinear oscillations", ASME. J. Appl. Mech, 47(3), 692. https://doi.org/10.1115/1.3153771.
  74. Norouzi, H. and Younesian, D. (2015), "Chaotic vibrations of beams on nonlinear elastic foundations subjected to reciprocating loads", Mech. Res. Communications, 69, 121-128. https://doi.org/10.1016/J.MECHRESCOM.2015.07.001.
  75. Pegios, I.P. and Hatzigeorgiou, G.D. (2018), "Finite element free and forced vibration analysis of gradient elastic beam structures", Acta Mechanica, 229(12), 4817-4830. https://doi.org/10.1007/s00707-018-2261-9.
  76. Rabhi, M., Benrahou, K.H., Kaci, A., Houari, M.S.A., Bourada, F., Bousahla, A.A. and Tounsi, A. (2020), "A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Geomech. Eng., 22(2), 119-132. https://doi.org/10.12989/gae.2020.22.2.119
  77. Rao, S.S. (2019), Vibration of Continuous Systems. John Wiley & Sons.
  78. Ramteke, P.M., Patel, B. and Panda, S.K. (2020a), "Timedependent deflection responses of porous FGM structure including pattern and porosity", Int. J. Appl. Mech., 12(09), 2050102. https://doi.org/10.1142/S1758825120501021.
  79. Ramteke, P.M., Mahapatra, B.P., Panda, S.K. and Sharma, N. (2020b), "Static deflection simulation study of 2D Functionally graded porous structure", Mater. Today: Proceedings, 33, 5544-5547. https://doi.org/10.1016/j.matpr.2020.03.537.
  80. Ramteke, P.M., Sharma, N., Choudhary, J., Hissaria, P. and Panda, S.K. (2021a), "Multidirectional grading influence on static/dynamic deflection and stress responses of porous FG panel structure: A micromechanical approach", Eng. Comput., 1-21. https://doi.org/10.1007/s00366-021-01449-w.
  81. Ramteke, P.M., Mehar, K., Sharma, N. and Panda, S.K. (2021b), "Numerical prediction of deflection and stress responses of functionally graded structure for grading patterns (power-law, sigmoid, and exponential) and variable porosity (even/uneven)", Scientia Iranica, 28(2), 811-829. https://doi.org/10.24200/SCI.2020.55581.4290.
  82. Ramteke, P.M. and Panda, S.K. (2021), "Free vibrational behaviour of multi-directional porous functionally graded structures", Arab. J. Sci. Eng., 46(8), 7741-7756. https://doi.org/10.1007/s13369-021-05461-6.
  83. Rouabhia, A., Heireche, H., Khelifi, S., Sahouane, N., Dabou, R., Ziane, A. and Tounsi, A. (2020), "Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory", ICREATA'21, 180. https://doi.org/10.12989/scs.2020.37.6.695.
  84. Sheng, G.G. and Wang, X. (2019), "Nonlinear forced vibration of functionally graded Timoshenko microbeams with thermal effect and parametric excitation", Int. J. Mech. Sci., 155, 405-416. https://doi.org/10.1016/j.ijmecsci.2019.03.015.
  85. Simsek, M. (2014). "Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and He's variational method", Compos. Struct., 112, 264-272. https://doi.org/10.1016/j.compstruct.2014.02.010.
  86. Taati, E. and Fallah, F. (2019), "Exact solution for frequency response of sandwich microbeams with functionally graded cores", J. Vib. Control, 25(19-20), 2641-2655. https://doi.org/10.1177/1077546319864645.
  87. Tahir, S. I., Tounsi, A., Chikh, A., Al-Osta, M. A., Al-Dulaijan, S. U., & Al-Zahrani, M. M. (2021a). An integral four-variable hyperbolic HSDT for the wave propagation investigation of a ceramic-metal FGM plate with various porosity distributions resting on a viscoelastic foundation. Waves in Random and Complex Media, 1-24. https://doi.org/10.1080/17455030.2021.1942310
  88. Tahir, S.I., Chikh, A., Tounsi, A., Al-Osta, M. A., Al-Dulaijan, S. U. and Al-Zahrani, M.M. (2021b), "Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment", Compos. Struct., 269, 114030. https://doi.org/10.1016/j.compstruct.2021.114030.
  89. Turkyilmazoglu, M. (2012), "An effective approach for approximate analytical solutions of the damped Duffing equation", Physica Scripta, 86(1), 015301. http://dx.doi.org/10.1088/0031-8949/86/01/015301.
  90. Vishesh R. Kar, Trupti R. Mahapatra and Subrata K. Panda, (2015), "Nonlinear flexural analysis of laminated composite flat panel under hygro-thermo-mechanical loading", Steel Compos. Struct., 19(4), 1011-1033, https://doi.org/10.12989/scs.2015.19.4.1011.
  91. Vosoughi, A.R. and Anjabin, N. (2017), "Dynamic moving load identification of laminated composite beams using a hybrid FETMDQ-GAs method", Inverse Prob. Sci. Eng., 25(11), 1639-1652. https://doi.org/10.1080/17415977.2016.1275613.
  92. Wang, Y. and Wu, D. (2016), "Thermal effect on the dynamic response of axially functionally graded beam subjected to a moving harmonic load", Acta Astronautica, 127, 171-181. https://doi.org/10.1016/j.actaastro.2016.05.030.
  93. Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aeros. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
  94. Wu, D., Liu, A., Huang, Y., Huang, Y., Pi, Y. and Gao, W. (2018), "Dynamic analysis of functionally graded porous structures through finite element analysis", Eng. Struct., 165, 287-301. https://doi.org/10.1016/j.engstruct.2018.03.023.
  95. Yang, J., Chen, D. and Kitipornchai, S. (2018), "Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method", Compos. Struct., 193, 281-294. https://doi.org/10.1016/j.compstruct.2018.03.090.
  96. Zghal, S. and Dammak, F. (2020), "Vibrational behavior of beams made of functionally graded materials by using a mixed formulation", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(18), 3650-3666. https://doi.org/10.1177/0954406220916533.
  97. Zghal, S., Ataoui, D. and Dammak, F. (2020), "Static bending analysis of beams made of functionally graded porous materials", Mech. Based Des. Struct. Machines, 1-18. https://doi.org/10.1080/15397734.2020.1748053.
  98. Zghal, S., Ataoui, D. and Dammak, F. (2021), "Free vibration analysis of porous beams with gradually varying mechanical properties", Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 14750902211047746. https://doi.org/10.1177/14750902211047746.
  99. Zghal, S., Ataoui, D. and Dammak, F. (2022), "Static bending analysis of beams made of functionally graded porous materials", Mech. Based Des. Struct. Mach., 50(3), 1012-1029. https://doi.org/10.1080/15397734.2020.1748053.
  100. Zhao, J., Xie, F., Wang, A., Shuai, C., Tang, J. and Wang, Q. (2019), "Vibration behavior of the functionally graded porous (FGP) doubly-curved panels and shells of revolution by using a semi-analytical method", Compos. Part B: Eng., 157, 219-238. https://doi.org/10.1016/j.compositesb.2018.08.087.