References
- Croce, E.S., Ferreira, E.G., Lemonge, A.C., Fonseca, L.G. and Barbosa, H.J. (2004), "A genetic algorithm for structural optimization of steel truss roofs. In XXV CILAMCE", 25th Iberian Latin-American Congress on Computational Methods in Engineering, UFPE, Recife, PE, Brasil.
- DEGERTEKIN, S.O. and HAYALIOGLU, M.S. (2013), "Sizing truss structures using teaching-learning-based optimization", Comput. Struct., 119, 177-188. https://doi.org/10.1016/j.compstruc.2012.12.011.
- Degertekin, S.O., Lamberti, L. and Ugur, I.B. (2019), "Discrete sizing/layout/topology optimization of truss structures with an advanced Jaya algorithm", Appl. Soft Comput., 79, 363-390. https://doi.org/10.1016/j.asoc.2019.03.058.
- Fiore, A., Marano, G.C., Greco, R. and Mastromarino, E. (2016), "Structural optimization of hollow-section steel trusses by differential evolution algorithm", Int. J. Steel Struct., 16(2), 411-423. https://doi.org/10.1007/s13296-016-6013-1.
- Gholizadeh, S., Davoudi, H. and Fattahi, F. (2017), "Design of steel frames by an enhanced moth-flame optimization algorithm", Steel Compos. Struct., 24(1). 129-140. https://doi.org/10.12989/scs.2017.24.1.129.
- Goncalves, M.S., Lopez, R.H. and Miguel, L.F.F. (2015), "Search group algorithm: A new metaheuristic method for the optimization of truss structures", Comput. Struct., 153, 165-184. http://doi.org/10.1016/j.compstruc.2015.03.003.
- Hasancebi, O.G.U.Z.H.A.N. and Carbas, S. (2014), "Bat inspired algorithm for discrete size optimization of steel frames", Adv. Eng. Softw., 67(2), 173-185. https://doi.org/10.1016/j.advengsoft.2013.10.003.
- HASANCEBI, O. and AZAD, S.K. (2015), "Adaptive dimensional search: A new metaheuristic algorithm for discrete truss sizing optimization", Comput. Struct., 154, 1-16. https://doi.org/10.1016/j.compstruc.2015.03.014.
- Haydar, H., Far, H. and Saleh, A. (2018), "Portal steel trusses vs. portal steel frames for long-span industrial buildings", Steel Construct., 11(3), 205-217. https://doi.org/10.1002/stco.201700011.
- Kaveh, A. and Khayatazad, M. (2013), "Ray optimization for size and shape optimization of truss structures", Comput. Struct., 117, 82-94. https://doi.org/10.1016/j.compstruc.2012.12.010.
- Kaveh, A. and Talatahari, S. (2010), "An improved ant colony optimization for the design of planar steel frames", Eng. Struct., 32(3), 864-873. https://doi.org/10.1016/j.engstruct.2009.12.012.
- Kayabekir, A.E., Bekdas, G. and Nigdeli, S.M. (2021), "Developments on metaheuristic-based optimization in structural engineering", In Advances in Structural Engineering-Optimization, 1-22. Springer, Cham.
- Kirkpatrick, S., Gelatt Jr, C.D. and Vecchi, M.P. (1983), "Optimization by simulated annealing", Science, 220(4598), 671-680. https://doi.org/10.1126/science.220.4598.671.
- Kravanja, S. and Zula, T. (2010), "Cost optimization of industrial steel building structures", Adv. Eng. Softw., 41(3), 442-450. https://doi.org/10.1016/j.advengsoft.2009.03.005.
- Kripakaran, P., Gupta, A. and Baugh Jr, J.W. (2007), "A novel optimization approach for minimum cost design of trusses", Comput. Struct., 85(23-24), 1782-1794. https://doi.org/10.1016/j.compstruc.2007.04.006.
- Kripka, M. (2004), "Discrete optimization of trusses by simulated annealing", J. Brazil. Soc. Mech. Sci. Eng., 26(2), 170-173. https://doi.org/10.1590/S1678-58782004000200008.
- Le, L.A., Bui-Vinh, T., Ho-Huu, V. and Nguyen-Thoi, T. (2017), "An efficient coupled numerical method for reliability-based design optimization of steel frames", J. Construct. Steel Res., 138, 389-400. https://doi.org/10.1016/j.jcsr.2017.08.002.
- Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A. H. and Teller, E. (1953), "Equation of state calculations by fast computing machines", J. Chemical Phys., 21(6), 1087-1092. https://doi.org/10.1063/1.1699114.
- Mortazavi, A. and Togan, V. (2021), "Metaheuristic algorithms for optimal design of truss structures", In Advances in Structural Engineering-Optimization, 199-220. Springer, Cham.
- NBR 6123 (1998), Forces Due to Wind in Buildings, Brazilian Association of Technical Standards; Rio de Janeiro, RJ, Brazil.
- NBR 8681 (2003), Actions and Safety in Structures - Procedure. Brazilian Association of Technical Standards; Rio de Janeiro, RJ, Brazil.
- NBR 8800 (1986), Calculation and Execution of Steel Structures, Brazilian Association of Technical Standards; Rio de Janeiro, RJ, Brazil.
- NBR 8800 (2008), Design of Steel Structures and Composite Structures for Buildings, Brazilian Association of Technical Standards; Rio de Janeiro, RJ, Brazil.
- Petrovic, N., Kostic, N., Marjanovic, N., Zivkovic, J. and Cofaru, I. (2020), "Effects of structural optimization on practical roof truss construction", Appl. Eng. Lett., 5(2), 39-45. https://doi.org/10.18485/aeletters.2020.5.2.1.
- Phan, D.T., Lim, J.B., Tanyimboh, T.T. and Sha, W. (2013), "An efficient genetic algorithm for the design optimization of coldformed steel portal frame buildings", Steel Compos. Struct., 15(5), 519-538. https://doi.org/10.12989/scs.2013.15.5.519.
- Phan, D.T., Mojtabaei, S.M., Hajirasouliha, I., Ye, J. and Lim, J.B. (2019), "Coupled element and structural level optimization framework for cold-formed steel frames", J. Construct. Steel Res., 168. https://doi.org/10.1016/j.jcsr.2019.105867.
- Pierezan, J., dos Santos Coelho, L., Mariani, V.C., de Vasconcelos Segundo, E.H. and Prayogo, D. (2021), "Chaotic coyote algorithm applied to truss optimization problems", Comput. Struct., 242. https://doi.org/10.1016/j.compstruc.2020.106353.
- R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/.
- Saleem, M.U. (2018), "Design optimization of pre-engineered steel truss buildings", Int. J. Civil Eng. Technol., 9(10), 304-316. http://www.iaeme.com/ijciet/issues.asp?JType=IJCIET&VType=9&IType=10.
- Mellaert, R.V., Mela, K., Tiainen, T., Heinisuo, M., Lombaert, G. and Schevenels, M. (2017), "Mixed-integer linear programming reformulation approach for global discrete sizing optimization of trussed steel portal frames", In World Congress of Structural and Multidisciplinary Optimisation, 738-754. Springer, Cham.
- Vishwakarma, N. and Tayal, H. (2018), "Optimization of industrial building using pre-engineering building and conventional steel building by fully stressed design", Int. J. Appl. Eng. Res., 13(20), 14573-14590. https://www.ripublication.com/ijaer18/ijaerv13n20_14.pdf.