Acknowledgement
This work was generously supported by the scientific and technological research and development project of China National Railway Group Co., Ltd (P2019T001, K2018G058), Sichuan Science and Technology Program (2021YJ0054), China-Indonesia Joint Research Center on High-speed Railway Technology (KY201801005) and the Science and Technology Department of Guangxi Zhuang Autonomous (2021AA01007AA).
References
- Abid, S.R. (2020), "Temperature variation in steel beams subjected to thermal loads", Steel Compos. Struct, 34(6), 819-835. http://dx.doi.org/10.12989/scs.2020.34.6.819.
- Ansys. 15.0. (2013), Ansys Company. Pennsylvania, USA
- Benmohammed, N., Ziane, N., Meftah, S.A. and Ruta, G. (2020), "Distortional effect on global buckling and post -buckling behaviour of steel box beams", Steel Compos. Struct, 35(6), 717-727. http://dx.doi.org/10.12989/scs.2020.35.6.717.
- Chang, S.T. (2004), "Shear lag effect in simply supported prestressed concrete box girder", J Bridge Eng, 9(2), 178-184. http://dx.doi.org/10.1061/(asce)1084-0702(2004)9:2(178).
- Chen, Y., Dong, J., Xu, T., Xiao, Y., Jiang, R. and Nie, X. (2019), "The shear-lag effect of composite box girder bridges with corrugated steel webs and trusses", Eng. Struct, 18, 617-628. http://dx.doi.org/10.1016/j.engstruct.2018.12.048.
- Gara, F., Ranzi, G. and Leoni,G. (2011), "Simplified method of analysis accounting for shear-lag effects in composite bridge decks", J Construct. Steel Res, 67(10), 1684-1697. http://dx.doi.org/10.1016/j.jcsr.2011.04.013.
- Jo, E.J., Vu, Q.V. and Kim, S.E. (2020), "Effect of residual stress and geometric imperfection on the strength of steel box girders", Steel Compos Struct, 34(3), 423-440. http://dx.doi.org/10.12989/scs.2020.34.3.423.
- Kristek, V., Evans, H.R. and Ahmad, M.K.M. (1990), "A shear lag analysis for composite box girders", J Construct. Steel Res, 16(1), 1-21. http://dx.doi.org/10.1016/0143-974X(90)90002-X.
- Luo, D., Zhang Z.W. and Li, B. (2019), "Shear lag effect in steelconcrete composite beam in hogging moment", Steel Compos. Struct., 31(1), 27-41. http://dx.doi.org/10.12989/scs.2019.31.1.027.
- Lezgy-Nazargah, M., Vidal, P. and Polit, O. (2019), "A sinus shear deformation model for static analysis of composite steelconcrete beams and twin-girder decks including shear lag and interfacial slip effects", Thin-Walled Struct, 134, 61-70. http://dx.doi.org/10.1016/j.tws.2018.10.001.
- Li, C., Li, B., Wei, C. and Zhang, J. (2011), "3-Bar simulationtransfer matrix method for shear lag analysis", Procedia Eng., 12, 21-26. http://dx.doi.org/10.1016/j.proeng.2011.05.005.
- Li, S.Y., Hong, Y., Gou, H.Y. and Pu, Q.H. (2021), "An improved method for analyzing shear-lag in thin-walled girders with rectangular ribs", J. Construct. Steel Res, 177, 106427. http://dx.doi.org/10.1016/j.jcsr.2020.106427.
- Li, X., Wan, S., Mo, Y.L., Shen, K., Zhou, T. and Nian, Y. (2019), "An improved method for analyzing shear lag in thin-walled box-section beam with arbitrary width of cantilever flange", Thin-Walled Struct, 140, 222-235. http://dx.doi.org/10.1016/j.tws.2019.03.026.
- Li, X.Y., Zhang, G., Kodur, V., He, S.H. and Huang, Q. (2021), "Designing method for fire safety of steel box bridge girders", Steel Compos. Struct., 38(6), 657-670. http://dx.doi.org/10.12989/scs.2021.38.6.657.
- Li, Y. D., Wu, J., Qiang, B., Zhou, S.T., Liu, W.Q. and Yao, C.R. (2021), "Measurements of residual stresses in a welded orthotropic steel deck by the hole-drilling method considering stress biaxiality", Eng Struct, 230, 111690. http://dx.doi.org/10.1016/j.engstruct.2020.111690.
- Lopez-Anido, R. and GangaRao Hota, V.S. (1996), "Warping solution for shear lag in thin-walled orthotropic composite beams", J Eng Mech, 122(5), 449-457. http://dx.doi.org/10.1061/(ASCE)0733-9399(1996)122:5(449).
- Luo, Q.Z., Li, Q.S. and Tang, J. (2002), "Shear lag in box girder bridges", J. Bridge Eng, 7(5), 308-313. http://dx.doi.org/10.1061/(ASCE)1084-0702(2002)7:5(308).
- Luo, Q.Z., Wu, Y.M., Li, Q.S., Tang, J. and Liu, G.D. (2004), "A finite segment model for shear lag analysis", Eng. Struct., 26(14), 2113-2124. http://dx.doi.org/10.1016/j.engstruct.2004.07.010.
- TB 10002 (2005), Code for Design on Steel Structure of Railway Bridge, MRPRC (Ministry of Railways of the People's Republic of China), China Railway Press, Beijing, China.
- GB 50017 (2017), Code for Design of Steel Structures, NSPRC (National Standards of the People's Republic of China). China Architecture & Building Press, Beijing, China.
- Prokic, A. (2002), "New finite element for analysis of shear lag", Comput. Struct., 80(11), 1011-1024. http://dx.doi.org/10.1016/S0045-7949(02)00036-6.
- Song, Q.G. and Scordelis, A.C. (1990), "Formulas for shear-lag effect of T-, I- and box beams", J. Struct. Eng., 116(5), 1306-1318. http://dx.doi.org/10.1061/(ASCE)0733-9445(1990)116:5(1306).
- Taherian, A.R. and Evans, H.R. (1997), "The bar simulation method for the calculation of shear lag in multi-cell and continuous box girders", Proceedings of the Institution of Civil Engineers, 2, 881-897. http://dx.doi.org/10.1680/iicep.1978.2818.
- Wang, J., Tang, S., Zheng, H., Zhou, C. and Zhu, M. (2020), "Flexural behavior of a 30-meter full-scale simply supported prestressed concrete box girder", Appl. Sci., 10(9), 3076. http://dx.doi.org/10.3390/app10093076.
- Wang, X. and Rammerstorfer, F.G. (1996), "Determination of effective breadth and effective width of stiffened plates by finite strip analyses", Thin-Walled Struct, 26(4), 261-286. http://dx.doi.org/10.1016/0263-8231(96)00028-6.
- Wei, X., Xiao, L. and Wang, Z.J. (2018), "Full-scale specimen testing and parametric studies on tensile-plate cable-girder anchorages in cable-stayed bridges with steel girders", J. Bridge Eng., 23(4), 04018006. http://dx.doi.org/10.1061/(ASCE)BE.1943-5592.0001193.
- Wang, Q. and Zhang, Z. (2011), "Orthotropic steel cantilever widening method of concrete box girder", Struct. Eng. Int., 21(2), 228-232. https://doi.org/10.2749/101686611X12994961034688.
- Yan, W.T., Han, B., Zhu, L., Jiao, Y.Y. and Xie, H.B. (2017), "A fiber beam element model for elastic-plastic analysis of girders with shear lag effects", Steel Compos Struct, 32(5), 657-670. http://dx.doi.org/10.12989/scs.2019.32.5.657.
- Zhang, Y.H. (2012), "Improved finite-segment method for analyzing shear lag effect in thin-walled box girders", J. Struct. Eng., 138(10), 1279-1284. http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000552.
- Zhang, Y.H. and Lin, L.X. (2014), "Shear lag analysis of thinwalled box girders based on a new generalized displacement", Eng. Struct., 61, 73-83. http://dx.doi.org/10.1016/j.engstruct.2013.12.031.
- Zhou, C., Li, L.F. and Wang, J.Q. (2020), "Modified bar simulation method for shear lag analysis of non-prismatic composite box girders with corrugated steel webs", Thin Wall. Struct., 155, 106975. http://dx.doi.org/10.1016/j.tws.2020.106957.
- Zhou, S.J. (2011), "Shear lag analysis in prestressed concrete box girders", J. Bridge Eng., 16(4), 500-512. http://dx.doi.org/10.1061/(ASCE)BE.1943-5592.0000179.
- Zhu, L., Nie, J.G., Li, F.X. and Ji, W.Y. (2015), "Simplified analysis method accounting for shear-lag effect of steel concrete composite decks", J. Construct. Steel Res., 115, 62-80. http://dx.doi.org/10.1016/j.jcsr.2015.08.020.
- Zhu, L., Wang, J., Zhao, G., Huo, X. and Li, X. (2020), "Experimental and numerical study on large-curvature curved composite box girder under hogging moment", Steel Compos. Struct., 37(2), 117-136. http://dx.doi.org/10.12989/scs.2020.37.2.117.
- Zhang, J.Q, Han, B., Xie, H.B., Yan, W.T., Li, W.W. and Yu, J.P. (2021), "Analysis of shear lag effect in the negative moment region of steel-concrete composite beams under fatigue load", Steel Compos. Struct., 39(4), 435-451. http://dx.doi.org/10.12989/scs.2021.39.4.435.