DOI QR코드

DOI QR Code

Investigation of the mechanical behavior of functionally graded sandwich thick beams

  • Mouaici, Fethi (Department of Civil Engineering, Faculty of Technology, University of Blida1) ;
  • Bouadi, Abed (Department of Physics, University of Science and Technology of Oran (USTO)) ;
  • Bendaida, Mohamed (Laboratoire de Modelisation et Simulation Multi-Echelle, Universite de Sidi Bel Abbes) ;
  • Draiche, Kada (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Bousahla, Abdelmoumen Anis (Laboratoire de Modelisation et Simulation Multi-Echelle, Universite de Sidi Bel Abbes) ;
  • Bourada, Fouad (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Ghazwani, Mofareh Hassan (Department of Mechanical Engineering, Faculty of Engineering, Jazan University) ;
  • Alnujaie, Ali (Department of Mechanical Engineering, Faculty of Engineering, Jazan University)
  • Received : 2019.03.28
  • Accepted : 2022.09.05
  • Published : 2022.09.10

Abstract

In this paper, an accurate kinematic model has been developed to study the mechanical response of functionally graded (FG) sandwich beams, mainly covering the bending, buckling and free vibration problems. The studied structure with homogeneous hardcore and softcore is considered to be simply supported in the edges. The present model uses a new refined shear deformation beam theory (RSDBT) in which the displacement field is improved over the other existing high-order shear deformation beam theories (HSDBTs). The present model provides good accuracy and considers a nonlinear transverse shear deformation shape function, since it is constructed with only two unknown variables as the Euler-Bernoulli beam theory but complies with the shear stress-free boundary conditions on the upper and lower surfaces of the beam without employing shear correction factors. The sandwich beams are composed of two FG skins and a homogeneous core wherein the material properties of the skins are assumed to vary gradually and continuously in the thickness direction according to the power-law distribution of volume fraction of the constituents. The governing equations are drawn by implementing Hamilton's principle and solved by means of the Navier's technique. Numerical computations in the non-dimensional terms of transverse displacement, stresses, critical buckling load and natural frequencies obtained by using the proposed model are compared with those predicted by other beam theories to confirm the performance of the proposed theory and to verify the accuracy of the kinematic model.

Keywords

References

  1. Abouelregal, A.E., Mohammad-Sedighi, H., Faghidian, S.A. and Shirazi, A.H. (2021), "Temperature-dependent physical characteristics of the rotating nonlocal nanobeams subject to a varying heat source and a dynamic load", Facta Univ., Series: Mech. Eng., 19(4), 633-656. https://doi.org/10.22190/FUME201222024A.
  2. Adiyaman, G., Yaylaci, M. and Birinci, A. (2015), "Analytical and finite element solution of a receding contact problem", Struct. Eng. Mech., 54(1), 69-85. https://doi.org/10.12989/SEM.2015.54.1.069.
  3. Ahmed, R.A., Khalaf, B.S., Raheef, K.M., Fenjan, R.M. and Faleh, N.M. (2021), "Investigating dynamic response of nonlocal functionally graded porous piezoelectric plates in thermal environment", Steel Compos. Struct., 40(2), 243-254. https://doi.org/10.12989/scs.2021.40.2.243
  4. Akavci, S.S. and Tanrikulu, A.H. (2015), "Static and free vibration analysis of functionally graded plates based on a new quasi-3D and 2D shear deformation theories", Compos. Part B, 83, 203-215. https://doi.org/10.1016/j.compositesb.2015.08.043.
  5. Akbas, S.D. (2021), "Dynamic analysis of axially functionally graded porous beams under a moving load", Steel Compos. Struct., 39(6), 811-821. https://doi.org/10.12989/SCS.2021.39.6.811.
  6. Akbas, S.D. (2022), "Moving-load dynamic analysis of AFG beams under thermal effect", Steel Compos. Struct., 42(5), 649-655. https://doi.org/10.12989/scs.2022.42.5.649.
  7. Alazwari, M.A., Abdelrahman, A.A., Wagih, A., Eltaher, M.A. and Abd-El-Mottaleb, H.E. (2021), "Static analysis of cutout microstructures incorporating the microstructure and surface effects", Steel Compos. Struct., 38(5), 583-597. https://doi.org/10.12989/SCS.2021.38.5.583.
  8. Al-Basyouni, K.S., Ghandourah, E., Mostafa, H.M. and Algarni, A. (2020), "Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body", Geomech. Eng., 21(1), 1-9. https://doi.org/10.12989/gae.2020.21.1.001.
  9. Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl Math Model, 35 (1), 412-25. https://doi.org/10.1016/j.apm. 2010.07.006.
  10. Arani, A.G., Navi, B.R. and Mohammadimehr, M. (2021), "Buckling and vibration of porous sandwich microactuatormicrosensor with three-phase carbon nanotubes/fiber/polymer piezoelectric polymeric nanocomposite face sheets", Steel Compos. Struct., 41(6), 805-820. https://doi.org/10.12989/SCS.2021.41.6.805.
  11. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  12. Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater Des., 28(5), 1651-1656. https://doi.org/10.1016/j.matdes.2006.02.007.
  13. Bi, R., Gao, J. and Allahyari, S. (2021), "Higher order plate theory for buckling analysis of plates based on exact solution", Steel Compos. Struct., 40(3), 451-459. https://doi.org/10.12989/SCS.2021.40.3.451.
  14. Birman, V., Keil, T. and Hosder, S. (2013), "Functionally graded materials in engineering", Struct. Interf. Attachment. Biology, 19-41. https://doi.org/10.1007/978-1-4614-3317-0_2.
  15. Chakraborty, A., Gopalakrishnan, S. and Reddy, J.N. (2003), "A new beam finite element for the analysis of functionally graded materials", Int. J. Mech. Sci., 45(3), 519-539. https://doi.org/10.1016/S0020-7403(03)00058-4.
  16. Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 131, 54-61. https://doi.org/10.1016/j.compstruct.2015. 07.052.
  17. Chen, H.L. and Leon, G. (2021), "Prediction of elastic constants of Timoshenko rectangular beams using the first two bending modes", Struct. Eng. Mech., 80(6), 657-668. https://doi.org/10.12989/SEM.2021.80.6.657.
  18. Dergachova, N.V. and Zou, G. (2021), "Dynamic response of functionally graded plates with a porous middle layer under time-dependent load", Comput. Concrete, 27(3), 269-282. https://doi.org/10.12989/CAC.2021.27.3.269.
  19. Dumas, M., Terriault, P. and Brailovski, V. (2017), "Modelling and characterization of a porosity graded lattice structure for additively manufactured biomaterials", Mater. Des., 121, 383-92. https://doi.org 10.1016/j.matdes. 2017.02.021.
  20. Ebrahimi, F. and Hosseini, S.H.S. (2021), "Nonlinear vibration and dynamic instability analysis nanobeams under thermomagneto-mechanical loads: a parametric excitation study", Eng. Comput., 37, 395-408. https://doi.org/10.1007/s00366-019-00830-0.
  21. Eltaher, M.A. and Mohamed, S.A. (2020), "Buckling and stability analysis of sandwich beams subjected to varying axial loads", Steel Compos. Struct., 34(2), 241-260. https://doi.org/10.12989/scs.2020.34.2.241.
  22. Ghandourah, E.E., Ahmed, H.M., Eltaher, M.A., Attia, M.A. and Abdraboh, A.M. (2021), "Free vibration of porous FG nonlocal modified couple nanobeams via a modified porosity model", Adv. Nano Res., 11(4), 405-422. https://doi.org/10.12989/ANR.2021.11.4.405.
  23. Ghannadpour, S.A.M. and Mehrparvar, M. (2020), "Modeling and evaluation of rectangular hole effect on nonlinear behavior of imperfect composite plates by an effective simulation technique", Compos. Mater. Eng., 2(1), 25-41. https://doi.org/10.12989/cme.2020.2.1.025.
  24. Ghumare, S.M. and Sayyad, A.S. (2020), "Analytical solutions for the hygro-thermo-mechanical bending of FG beams using a new fifth order shear and normal deformation theory", J. Appl. Comput. Mech., 14(1), 5-30. https://doi.org/10.24132/acm.2020.580.
  25. Giunta, G., Belouettar, S. and Carrera, E. (2010), "Analysis of FGM beams by means of classical and advanced theories", Mech. Adv. Mater. Struct., 17(8), 622-635. https://doi.org/10.1080/ 15376494.2010.518930.
  26. He, J. and Sun, Y. (2021), "Numerical and computational modeling for nonlinear dynamic simulation of curved shells under multi-physical fields", Adv. Nano Res., 11(5), 467-477. https://doi.org/10.12989/ANR.2021.11.5.467.
  27. Hendi, A.A., Eltaher, M.A., Mohamed, S.A., Attia, M.A. and Abdalla, A.W. (2021), "Nonlinear thermal vibration of pre/postbuckled two-dimensional FGM tapered microbeams based on a higher order shear deformation theory", Steel Compos. Struct., 41(6), 787-803. https://doi.org/10.12989/SCS.2021.41.6.787.
  28. Hieu, D.V., Hoa, N.T., Duy, L.Q. and Kim Thoa, N.T. (2021), "Nonlinear vibration of an electrostatically actuated functionally graded microbeam under longitudinal magnetic field", J. Appl. Comput. Mech., 7(3), 1537-1549. https://doi.org/10.22055/jacm.2021.35504.2670 .
  29. Hung, D.X. and Truong, H.Q. (2018), "Free vibration analysis of sandwich beams with FG porous core and FGM faces resting on Winkler elastic foundation by various shear deformation theories", J. Sci. Tech. Civil Eng., 12(3), 23-33. https://doi.org/10.31814/stce.nuce2018-12(3)-03.
  30. Jena, S.K., Chakraverty, S., Malikan, M. and Sedighi, H. (2020), "Implementation of Hermite-Ritz method and Naviera technique for vibration of functionally graded porous nanobeam embedded in Winkler Pasternak elastic foundation using bi-Helmholtz nonlocal elasticity", J. Mech. Mater. Struct., 15(3), 405-434. https://doi.org/10.2140/jomms.2020.15.405.
  31. Jin, C. and Wang, X. (2015), "Accurate free vibration analysis of Euler functionally graded beams by the weak form quadrature element method", Compos. Struct., 125, 41-50. https://doi.org10.1016/j.compstruct.2015. 01.039.
  32. Kahya, V. nd Turan, M. (2017), "Finite element model for vibration and buckling of functionally graded beams based on the first-order shear deformation theory", Compos. Part B Eng., 109, 108-115. https://doi.org/10.1016/j.compositesb.2016.10.039.
  33. Karakoti, A., Pandey, S. and Kar, V.R. (2021), "Dynamic responses analysis of P and S-FGM sandwich cylindrical shell panels using a new layerwise method", Struct. Eng. Mech., 80(4), 417-432. https://doi.org/10.12989/SEM.2021.80.4.417.
  34. Karamanli, A. (2017), "Bending behaviour of two directional functionally graded sandwich beams by using a quasi-3D shear deformation theory", Compos. Struct., 174, 70-86. DOI:10.1016/j.compstruct.2017. 04.046.
  35. Karami, B. and Janghorban, M. (2019), "A new size-dependent shear deformation theory for wave propagation analysis of triclinic nanobeams", Steel and Composite Structures, 32(2), 213-223. DOI: http://dx.doi.org/10.12989/scs.2019.32.2.213
  36. Karami, B. and Karami, S. (2019), "Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials", Adv. Nano Res., 7(1), 51-61. http://dx.doi.org/10.12989/anr.2019.7.1.051.
  37. Kargar, J., Arani, A.G., Arshid, E. and Rahaghi, M.I. (2021), "Vibration analysis of spherical sandwich panels with MR fluids core and magneto-electro-elastic face sheets resting on orthotropic viscoelastic foundation", Struct. Eng. Mech., 78(5), 557-572. https://doi.org/10.12989/sem.2021.78.5.557.
  38. Kasiviswanathan, M. and Anbarasu, M. (2021), "Simplified approach to estimate the lateral torsional buckling of GFRP channel beams", Struct. Eng. Mech., 77(4), 523-533. https://doi.org/10.12989/SEM.2021.77.4.523.
  39. Katariya, P.V. and Panda, S.K. (2020), "Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect", Steel Compos. Struct., 34(2), 279-288. http://dx.doi.org/10.12989/scs.2020.34.2.279
  40. Kiani, Y. (2019), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates", J. Thermal Stresses, 1-19. http://dx.doi.org 10.1080/01495739.2019.1673687.
  41. Kindova-Petrova, D.D. (2021), "A new crack size prediction method using damaged beam mode shape", Struct. Eng. Mech., 80(4), 391-399. https://doi.org/10.12989/SEM.2021.80.4.391.
  42. Kumar, S. (2010), "Development of functionally graded materials by ultrasonic consolidation", CIRP J. Manufact. Sci. Tech., 3(1), 85-87. https://doi.org/10.1016/j.cirpj.2010.07.006.
  43. Lata, P. and Kaur, H. (2021), "Deformation in a homogeneous isotropic thermoelastic solid with multi-dual-phase-lag heat & two temperature using modified couple stress theory", Compos. Mater. Eng., 3(2), 89-106. https://doi.org/10.12989/CME.2021.3.2.089.
  44. Liu, J., Wang, H. and Yin, H. (2021), "Nonlinear vibration behavior of hybrid multi-scale cylindrical panels via semi numerical method", Comput. Concrete, 28(3), 233-242. https://doi.org/10.12989/CAC.2021.28.3.233.
  45. Lohar, H., Mitra, A. and Sahoo, S., (2019), "Nonlinear response of axially functionally graded Timoshenko beams on elastic foundation under harmonic excitation", Curved Layer. Struct., 6(1), 90-104. https://doi.org/10.1515/cls-2019-0008.
  46. Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
  47. Madenci, E. and Ozkilic, Y.O. (2021), "Cyclic response of selfcentering SRC walls with frame beams as boundary", Steel Compos. Struct., 40(2), 157-173. https://doi.org/10.12989/SCS.2021.40.2.157.
  48. Madenci, E. and Ozkili, Y.O. (2021), "Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches", Steel Compos. Struct., 40(2), 157-173. https://doi.org/10.12989/scs.2021.40.2.157
  49. Mahamood, R.M. and Akinlabi, E.T. (2017), Functionally Graded Materials, Springer International Publishing AG.
  50. Mantari, J.L. and Granados, E.V. (2015), "Thermoelastic analysis of advanced sandwich plates based on a new quasi-3D hybrid type HSDT with 5 unknowns", Compos.: Part B, 69, 317-334. https://doi.org/10.1016/j. compositesb.2014.10.009.
  51. Maryoto, A., Lie, H. A. and Jonkers, H.M. (2021), "Flexural strength of concrete-galvalume composite beam under elevated temperatures", Comput. Concrete, 27(1), 13-20. https://doi.org/10.12989/CAC.2021.27.1.013.
  52. Miyamoto, Y. (2016), "The Applications of Functionally Graded Materials in Japan", Mater. Tech., 11(6), 230-236. http://www.tandfonline.com/loi/ymte20. https://doi.org/10.1080/10667857.1996.11752708
  53. Mohamed, N., Mohamed, S.A. and Eltaher, M.A. (2021), "Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. Comput., 37, 2823-2836. https://doi.org/10.1007/s00366-020-00976-2.
  54. Motaharifar, F., Ghassabi, M. and Talebitooti, R. (2021), "A variational iteration method (VIM) for nonlinear dynamic response of a cracked plate interacting with a fluid media", Eng. Comput., 37, 3299-3318. https://doi.org/10.1007/s00366-020-00998-w.
  55. Mousavi, S.B., Amir, S., Jafari, A. and Arshid, E. (2021), "Analytical solution for analyzing initial curvature effect on vibrational behavior of PM beams integrated with FGP layers based on trigonometric theories", Adv. Nano Res., 10(3), 235-251. https://doi.org/10.12989/ANR.2021.10.3.235.
  56. Muller, E., Drasar, C., Schilz, J. and Kaysser, W.A. (2003), "Functionally graded materials for sensor and energy applications", J. Mater. Sci. and Eng.: A, 362(1), 17-39. https://doi.org/10.1016/S0921-5093(03) 00581-1.
  57. Nejadi, M.M., Mohammadimehr, M. and Mehrabi, M. (2021), "Free vibration and buckling of functionally graded carbon nanotubes / graphene platelets Timoshenko sandwich beam resting on variable elastic foundation", Adv. Nano Res., 10(6), 539-548. https://doi.org/10.12989/ANR.2021.10.6.539.
  58. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Jorge, R. M.N. and Soares, C.M.M. (2012), "Buckling analysis of sandwich plates with functionally graded skins using a new quasi-3D hyperbolic sine shear deformation theory and collocation with radial basis function", ZAMM-J. Appl. Mathem. Mech./Zeitschrift fur Angewandte Mathematik und Mechanik, 92(9), 749-766. https://doi.org/10.1002/zamm. 201100186.
  59. Nguyen, T.K. and Nguyen, B.D. (2015), "A new higher-order shear deformation theory for static, buckling and free vibration analysis of functionally graded sandwich beams", J. Sandw. Struct. Mater., 17(6), 613-631. https://doi.org/10.1177/1099636215589237.
  60. Nguyen, T.K., Nguyen, N.D., Vo, T.P. and Thai, H.T. (2017), "Trigonometric-series solution for analysis of laminated composite beams", Compos. Struct., 160, 142-151. https://doi.org/10.1016/j.compstruct.2016. 10.033.
  61. Nguyen, T.K., Nguyen, T.T.P., Vo, T.P. and Thai, H.T. (2015), "Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory", Compos. Part B Eng., 76, 273-285. https://doi.org/10.1016/j.compositesb.2015.02.032.
  62. Nguyen, T.K., Vo, T.P. and Thai, H.T. (2013), "Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory", Compos. Part B-Eng., 55, 147-157. https://doi.org/10.1016/j.compositesb.2013.06.011.
  63. Oner, E., Sabano, B.S., Yaylaci, E.U., Adiyaman, G., Yaylaci, M. and Birinci, A. (2022), "On the plane receding contact between two functionally graded layers using computational, finite element and artificial neural network methods", J. Appl. Mathem. Mechanics, 102(2), https://doi.org/10.1002/zamm.202100287.
  64. Oner, E., Yaylaci, M. and Birinci, A. (2014), "Solution of a receding contact problem using an analytical method and a finite element method", J. Mech. Mater. Struct., 9(3), 333-345. https://doi.org/10.2140/jomms.2014.9.333.
  65. Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural insulated panels: State-of-the-Art", Trends Civil Eng. Architect., 3(1), 336-340. https://doi.org/0.32474/TCEIA.2018.03.000151.
  66. Paszkiewicz, B., Paszkiewicz, R., Wosko, M., Radziewicz, D., Sciana, B., Szyszka, A. and Tlaczala, M. (2007), "Functionally graded semiconductor layers for devices application", Vacuum, 82(4), 389-394. https://doi.org/10.1016/j.vacuum. 2007.06.008.
  67. Pompe, W., Worch, H., Epple, M., Friess, W., Gelinsky, M., Greil, P. and Schulte, K.J.M.S. (2003), "Functionally graded materials for biomedical applications", Mater. Sci. Eng.:A, 362(1-2), 40-60. https://doi.org/10.1016/S0921-5093(03) 00580-X.
  68. Popoola, P., Farotade, G., Fatoba, O. and Popoola, O. (2016), "Laser engineering net shaping method in the area of development of functionally graded materials (FGMs) for aero engine applications: A review", In Fiber Laser, InTech: Vienna, Austria, 383-399. https://doi.org/10.5772/61711.
  69. Pour, M.M.H. and Ovesy, H.R. (2021), "Nonlinear dynamic buckling analysis of imperfect viscoelastic composite laminated plates", Struct. Eng. Mech., 79(5), 653-663. https://doi.org/10.12989/SEM.2021.79.5.653.
  70. Pourabdy, M., Shishesaz, M., Shahrooi, S. and S Roknizadeh, S.A. (2021), "Analysis of axisymmetric vibration of functionallygraded circular nano-plate based on the integral form of the strain gradient model", J. Appl. Comput. Mech., 7(4), 2196-2220. https://doi.org/10.22055/jacm.2021.37461.3021 .
  71. Pradhan, K. and Chakraverty, S. (2013), "Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method", Compos. Part B: Eng., 51, 175-184. https://doi.org/10.1016/ j.compositesb.2013.02.027.
  72. Pradhan, K.K. and Chakraverty, S. (2014), "Effects of different shear deformation theories on free vibration of functionally graded beams", Int. J. Mech. Sci., 82, 149-160. https://doi.org/10.1016/ j.ijmecsci.2014.03.014.
  73. Rahimi, G.H., Gazor, M.S., Hemmatnezhad, M. and Toorani, H. (2013), "On the postbuckling and free vibrations of FG Timoshenko beams", Compos. Struct., 95, 247-253. https://doi.org/10.1016/j.compstruct.2012. 07.034.
  74. Rahmani, M. and Mohammadi, Y. (2021), "Vibration of two types of porous FG sandwich conical shell with different boundary conditions", Struct. Eng. Mech., 79(4), 401-413. https://doi.org/10.12989/SEM.2021.79.4.401.
  75. Rajabi, J. and Mohammadimehr, M. (2021), "Forced vibration analysis of a micro sandwich plate with an isotropic/orthotropic cores and polymeric nanocomposite face sheets", Comput. Concrete, 28(3), 259-273. https://doi.org/10.12989/CAC.2021.28.3.259.
  76. Reddy, J.N. (2011), "Microstructure-dependent couple stress theories of functionally graded beams", J. Mech. Phys. Solids, 59(11), 2382-2399. https://doi.org/10.1016/j.jmps.2011.06.008.
  77. Reissner, E. (1975), "On transverse bending of plates, including the effect of transverse shear deformation", Int J Solids Struct, 11(5), 569-739. https://doi.org/10.1016/0020-7683(75)90030-X.
  78. Rezaiee-Pajand, M. and Masoodi, A.R. (2016), "Exact natural frequencies and buckling load of functionally graded material tapered beam-columns considering semi-rigid connections", J. Vib. Control, 24(9), 1787-1808. https://doi.org/10.1177/1077546316668932 .
  79. Rezaiee-Pajand, M., Masoodi, A.R. and Alepaighambar, A. (2021), "Critical buckling moment of functionally graded tapered monosymmetric I-beam", Steel Compos. Struct., 39(5), 599-614. https://doi.org/10.12989/SCS.2021.39.5.599.
  80. Rezaiee-Pajand, M., Masoodi, A.R. and Mokhtari, M. (2018a), "Static analysis of functionally graded non-prismatic sandwich beams", Adv. Comput. Des., 3(2), 165-190. https://doi.org/10.12989/ACD.2018.3.2.165.
  81. Rezaiee-Pajand, M., Mokhtari, M. and Masoodi, A.R. (2018a), "Stability and free vibration analysis of tapered sandwich columns with functionally graded core and flexible connections", CEAS Aeronaut. J., https://doi.org/10.1007/s13272-018-0311-6.
  82. Rezaiee-Pajand, M., Rajabzadeh-Safaei, N. and Masoodi, A.R. (2020), "An efficient curved beam element for thermomechanical nonlinear analysis of functionally graded porous beams", Structures, 28, 1035-1049. https://doi.org/10.1016/j.istruc.2020.08.038.
  83. Rezaiee-Pajand, M., Masoodi, A.R. and Bambaeechee, M. (2019), "Tapered beam-column analysis by analytical solution", Proceedings of the Institution of Civil Engineers - Structures and Buildings, 172(11), 789-804. https://doi.org/10.1680/jstbu.18.00062.
  84. Rostami, R. and Mohammadimehr, M. (2021), "Nonlinear stability analysis of porous sandwich beam with nanocomposite face sheet on nonlinear viscoelastic foundation by using Homotopy perturbation method", Steel Compos. Struct., 41(6), 821-829. https://doi.org/10.12989/scs.2021.41.6.821.
  85. Rostamia, R. and Mohammadimehr, M. (2021), "Nonlinear stability analysis of porous sandwich beam with nanocomposite face sheet on nonlinear viscoelastic foundation by using Homotopy perturbation method", Steel Compos. Struct., 41(6), 821-829. https://doi.org/10.12989/SCS.2021.41.6.821.
  86. Safari, M., Mohammadimehr, M. and Ashrafi, H. (2021), "Free vibration of electro-magneto-thermo sandwich Timoshenko beam made of porous core and GPLRC", Adv. Nano Res., 10 (2), 115-128. https://doi.org/10.12989/ANR.2021.10.2.115.
  87. Salami, S.J., Boroujerdy, M.S. and Bazzaz, E. (2021), "Geometrically nonlinear thermo-mechanical bending analysis of deep cylindrical composite panels reinforced by functionally graded CNTs", Adv. Nano Res., 10(4), 385-395. https://doi.org/10.12989/ANR.2021.10.4.385.
  88. Sayyad, A.S. and Ghugal, Y.M. (2018), "Modeling and analysis of functionally graded sandwich beams: A review", Mec. Adv. Mater. Struct., 0(0), 1-20. https://doi.org/10.1080/15376494.2018.1447178.
  89. Sayyad, A.S. and Ghugal, Y.M. (2019), "A unified five-degree-offreedom theory for the bending analysis of softcore and hardcore functionally graded sandwich beams and plates", J. Sandw. Struct. Mater., 0(0), 1-4. https://doi.org/10.1177/1099636219840980.
  90. Sayyad, A.S., Avhad, P.V. (2019), "On static bending, elastic buckling and free vibration analysis of symmetric functionally graded sandwich beams", J. Solid Mech., 11(1), 166-180. https://doi.org/10.22034/ jsm.2019.664227.
  91. Schulz, U., Peters, M., Bach, F.W. and Tegeder, G. (2003), "Graded coatings for thermal, wear and corrosion barriers", Mater. Sci. Eng.: A, 362(1), 61-80. https://doi.org/10.1016/S0921-5093(03)00579-3.
  92. Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam", Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/SSS.2020.26.3.361.
  93. Shakouri, M. (2021), "Analytical solution for stability analysis of joined cross-ply thin laminated conical shells under axial compression", Compos. Mater. Eng., 3(2), 117-134. https://doi.org/10.12989/CME.2021.3.2.117.
  94. Sharma, N., Lalepalli, A.K., Hirwani, C.K., Das,A., Panda, S.K., Topal, U., Dede, T. (2021), "Optimal deflection and stacking sequence prediction of curved composite structure using hybrid (FEM and soft computing) technique", Eng. Comput., 37, 477-487. https://doi.org/10.1007/s00366-019-00836-8.
  95. Shinohara, Y. (2013), "Functionally Graded Materials", Handbook of Advanced Ceramics, 1179-1187. https://doi.org/10.1016/B978-0-12-385469-8.00061-7.
  96. Simsek, M. (2010), "Vibration analysis of a functionally graded beam under a moving mass by using different beam theories", Compos. Struct., 92(4), 904-917. https://doi.org/10.1016/j.compstruct.2009.09.030.
  97. Simsek, M. and Reddy, J.N. (2013), "Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci., 64(1), 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002.
  98. Sina, S.A., Navazi, H.M. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of functionally graded beams", Mater and Des, 30(3), 741-747. https://doi.org/10.1016/j.matdes.2008.05.015.
  99. Sobhani, E. and Masoodi, A.R. (2022), "Differential quadrature technique for frequencies of the coupled circular arch-arch beam bridge system", Mech. Adv. Mater. Struct., https://doi.org/10.1080/15376494.2021.2023920.
  100. Sola, A., Bellucci, D. and Cannillo, V. (2016), "Functionally graded materials for orthopedic applications-an update on design and manufacturing", Biotechnol. Adv., 34, 504-531. https://doi.org/10.1016/j.biotechadv.2015. 12.013.
  101. Su, H. and Banerjee, J.R. (2015), "Development of dynamic stiffness method for free vibration of functionally graded Timoshenko beams", Comput. Struct., 147, 107-116. https://doi.org/10.1016/j.compstruc.2014.10.001.
  102. Tang, A.Y., Wu, J.X., Li, X.F. and Lee, K.Y. (2014), "Exact frequency equations of free vibration of non-uniform functionally graded Timoshenko beams", Int. J. Mech. Sci., 89, 1-11. https://doi.org/10.1016/j.ijmecsci. 2014.08.017.
  103. Tarlochan, F. (2012), "Functionally graded material: A new breed of engineered material," J. Appl. Mech. Eng., 1(5), 1-2. https://doi.org/10.4172/2168-9873.1000e115.
  104. Taskin, V. and Demirhan, P.A. (2021), "Static analysis of simply supported porous sandwich plates", Struct. Eng. Mech., 77(4), 549-557. https://doi.org/10.12989/SEM.2021.77.4.549.
  105. Timesli, A. (2020a), "Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory", Adv. Nano Res., 9(2), 69-83. http://dx.doi.org/10.12989/anr.2020.9.2.069.
  106. Timesli, A. (2020b), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete, 26(1), 53-62. http://dx.doi.org/10.12989/cac.2020.26.1.053
  107. Timesli, A. (2021), "A cylindrical shell model for nonlocal buckling behavior of CNTs embedded in an elastic foundation under the simultaneous effects of magnetic field, temperature change, and number of walls", Adv. Nano Res., 11(6), 581-593. https://doi.org/10.12989/ANR.2021.11.6.581.
  108. Timoshenko, S.P. (1921), "On the correction for shear of the differential equation for transverse vibrations of prismatic bars", Philos. Mag., 41(245), 742-746. https://doi.org/10.1080/14786442108636264.
  109. Tossapanon, P. and Wattanasakulpong, N. (2016), "Stability and free vibration of functionally graded sandwich beams resting on two parameter elastic foundation", Compos. Struct., 142, 215-225. https://doi.org/10.1016/j.compstruct.2016.01.085.
  110. Tran, T.T., Nguyen, N.H., Do, T.V., Minh, P.V. and Duc, N.D. (2019), "Bending and thermal buckling of unsymmetric functionally graded sandwich beams in high-temperature environment based on a new third-order shear deformation theory", J. Sandw. Struct. Mater., 0(0), 1-25. https://doi.org/10.1177/10996362 19849268.
  111. Trinh, L.C., Vo, T.P., Thai, H.T. and Nguyen, T.K. (2016), "An analytical method for the vibration and buckling of functionally graded beams under mechanical and thermal loads", Compos. Part B: Eng., 100, 152-163. https://doi.org/10.1016/j.compositesb.2016.06.067.
  112. Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
  113. Vo, T.P., Thai, H.T., Nguyen, T.K., Maheri, A. and Lee, J. (2014), < Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory", Eng. Struct., 64, 12-22. https://doi.org/10.1016/j.engstruct.2014.01.029.
  114. Vu, T.A.N., Le, T.N.A. and Nguyen, D.K. (2020), "Free vibration of a 2D-FGSW beam based on a shear deformation theory, Vietnam J. of Mech.", 42(2), 189-205. https://doi.org/10.15625/0866-7136/14817.
  115. Wang, Y., Zhou, A., Fu, T. and Zhang, W. (2019), "Transient response of a sandwich beam with functionally graded porous core traversed by a non-uniformly distributed moving mass", Int. J. Mech. Mater. Des., https://doi.org/10.1007/s10999-019-09483-9.
  116. Wang, Z.H., Wang, X.H., Xu, G.D., Cheng, S. and Zeng, T. (2016), "Free vibration of two-directional functionally graded beams", Compos. Struct., 135, 191-198. https://doi.org10.1016/j.compstruct.2015.09.013.
  117. Yahea, H.T. and Majeed, W.I. (2021), "Free vibration of laminated composite plates in thermal environment using a simple four variable plate theory", Compos. Mater. Eng., 3(3), 179-199. https://doi.org/10.12989/cme.2021.3.3.179.
  118. Yang, J. and Chen, Y. (2008), "Free vibration and buckling analyses of functionally graded beams with edge cracks", Compos. Struct., 83(1), 48-60. https://doi.org/10.1016/j.compstruct.2007.03.006.
  119. Yaylaci, E.U., Yaylaci, M., Olmez, H. and Birinci, A. (2020b), "Artificial neural network calculations for a receding contact problem", Comput. Concrete, 25(6), 551-563. https://doi.org/10.12989/CAC.2020.25.6.551.
  120. Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/SEM.2016.57.6.1143.
  121. Yaylaci, M. (2022c), "Simulate of edge and an internal crack problem and estimation of stress intensity factor through finite element method", Adv. Nano Res., 12(4), 405-414. https://doi.org/10.12989/ANR.2022.12.4.405.
  122. Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/CAC.2020.26.2.107.
  123. Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., 48(2), 241-255. https://doi.org/10.12989/SEM.2013.48.2.241.
  124. Yaylaci, M., Abanoz, M., Yaylaci, E.U., Olmez, H., Sekban, D.M. and Birinci , A. (2022a), "Evaluation of the contact problem of functionally graded layer resting on rigid foundation pressed via rigid punch by analytical and numerical (FEM and MLP) methods", Arch Appl Mech., 92, 1953-1971. https://doi.org/10.1007/s00419-022-02159-5.
  125. Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2020a), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. https://doi.org/10.12989/SEM.2020.76.3.325.
  126. Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2021b), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, 27(3), 199-210. https://doi.org/10.12989/CAC.2021.27.3.199.
  127. Yaylaci, M., Eyuboglu, A., Adiyaman, G., Yaylaci, E.U., Oner, E. and Birinci, A. (2021c), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., 154, 103730. https://doi.org/10.1016/j.mechmat.2020.103730.
  128. Yaylaci, M., Oner, E. and Birinci, A. (2014), "Comparison between Analytical and ANSYS Calculations for a Receding Contact Problem", J. Eng. Mech., 140(9), 04014070. https://doi.org/10.1061/(asce)em.1943-7889.0000781.
  129. Yaylaci, M., Sabano, B.S., Ozdemir, M.E. and Birinci, A. (2022b), "Solving the contact problem of functionally graded layers resting on a HP and pressed with a uniformly distributed load by analytical and numerical methods", Struct. Eng. Mech., 82(3), 401-416. https://doi.org/10.12989/SEM.2022.82.3.401.
  130. Yaylaci, M., Yayli, M., Yaylaci, E.U., Olmez, H. and Birinci, A. (2021a), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585.
  131. Zhang, Z., Li, Y., Wu, H., Zhang, H., Wu, H., Jiang, S. and Chai, G. (2018), Mechanical analysis of functionally graded graphene oxide-reinforced composite beams based on the first-order shear deformation theory", Mec. of Adv. Mater. Struct., 1-9. https://doi.org/10.1080/15376494.2018.1444216.