DOI QR코드

DOI QR Code

Equivalent material properties of perforated metamaterials based on relative density concept

  • Barati, Mohammad Reza (Department of Aerospace Engineering, Amirkabir University of Technology (Tehran Polytechnic)) ;
  • Shahverdi, Hossein (Department of Aerospace Engineering, Amirkabir University of Technology (Tehran Polytechnic))
  • 투고 : 2020.10.28
  • 심사 : 2021.05.21
  • 발행 : 2022.09.10

초록

In this paper, the equivalent material properties of cellular metamaterials with different types of perforations have been presented using finite element (FE) simulation of tensile test in Abaqus commercial software. To this end, a Representative Volume Element (RVE) has been considered for each type of cellular metamaterial with regular array of circular, square, oval and rectangular perforations. Furthermore, both straight and perpendicular patterns of oval and rectangular perforations have been studied. By applying Periodic Boundary conditions (PBC) on the RVE, the actual behavior of cellular material under uniaxial tension has been simulated. Finally, the effective Young's modulus, Poisson's ratio and mass density of various metamaterials have been presented as functions of relative density of the RVE

키워드

참고문헌

  1. Abdelrahman, A.A., Abd-El-Mottaleb, H.E. and Eltaher, M.A. (2020), "On bending analysis of perforated microbeams including the microstructure effects", Struct. Eng. Mech., 76(6), 765. http://dx.doi.org/10.12989/sem.2020.76.6.765.
  2. Barati, M.R. and Shahverdi, H. (2022), "Vibration frequencies of meta-material plates based on the numerical calibration of shape factor for various cell patterns", Waves Random Complex Media, 1-19. https://doi.org/10.1080/17455030.2022.2046300.
  3. Cai, W. and Shalaev, V.M. (2010), "Optical metamaterials, New York, Springer. https://doi.org/10.1007/978-1-4419-1151-3.
  4. Del Vescovo, D. and Giorgio, I. (2014), "Dynamic problems for metamaterials: review of existing models and ideas for further research", Int. J. Eng. Sci., 80, 153-172. https://doi.org/10.1016/j.ijengsci.2014.02.022.
  5. Donaldson, L. (2013), "Metamaterials help thermal flow", Mater. Today, 6(16), 207. https://doi.org/10.1016/j.mattod.2013.06.015.
  6. Dong, C. (2006), "Effective elastic properties of doubly periodic array of inclusions of various shapes by the boundary element method", Int. J. Solids Struct., 43(25-26), 7919-7938. https://doi.org/10.1016/j.ijsolstr.2006.04.009.
  7. Findeisen, C., Forest, S., Hohe, J. and Gumbsch, P. (2020), "Discrete and continuum modelling of size effects in architectured unstable metamaterials", Continuum Mech. Thermodyn, 1-17. https://doi.org/10.1007/s00161-020-00870-8.
  8. Gao, S., Wang, C. and Zhao, Z. (2019), "Mechanical properties of ZrO2 honeycomb sandwich structures by 3D printing", In IOP Conference Series: Materials Science and Engineering, 678(1) 012018. IOP Publishing. https://doi.org/10.1088/1757-899X/678/1/012018.
  9. Gibson, L.J., Ashby, M.F., Schajer, G.S. and Robertson, C.I. (1982), "The mechanics of two-dimensional cellular materials", Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 382(1782), 25-42. https://doi.org/10.1098/rspa.1982.0087.
  10. Gibson, L.J. and Ashby, M.F. (1997), Cellular Solids: Structures and Properties. Cambridge, UK: Cambridge University Press, https://doi.org/10.1557/mrs2003.79.
  11. Hohe, J. and Becker, W. (1999), "Effective elastic properties of triangular grid structures", Compos. Struct., 45(2), 131-145. https://doi.org/10.1016/S0263-8223(99)00016-1.
  12. Jhung, M.J. and Jeong, K.H. (2015), "Free vibration analysis of perforated plate with square penetration pattern using equivalent material properties", Nuclear Eng. Technol., 47(4), 500-511. https://doi.org/10.1016/j.net.2015.01.012.
  13. Jiao, P. and Alavi, A.H. (2018), "Buckling analysis of graphenereinforced mechanical metamaterial beams with periodic webbing patterns", Int. J. Eng. Sci., 131, 1-18. https://doi.org/10.1016/j.ijengsci.2018.06.005
  14. Khan, M.K., Baig, T. and Mirza, S. (2012), "Experimental investigation of in-plane and out-of-plane crushing of aluminum honeycomb", Mater. Sci. Eng.: A, 539, 135-142. https://doi.org/10.1016/j.msea.2012.01.070.
  15. Li, X. and Gao, H. (2016), "Mechanical metamaterials: Smaller and stronger", Nature Mater., 15(4), 373-374. https://doi.org/10.1038/nmat4591.
  16. Li, Y., Zi, H., Wu, X. and Zhu, L. (2020), "Flexural wave propagation and vibration isolation characteristics of sandwich plate-type elastic metamaterials", J. Vib. Control, 1077546320942689. https://doi.org/10.1177%2F1077546320942689. https://doi.org/10.1177%2F1077546320942689
  17. Ma, G. and Sheng, P. (2016), "Acoustic metamaterials: From local resonances to broad horizons", Sci. Adv., 2(2), e1501595. https://doi.org/10.1126/sciadv.1501595.
  18. Pacchioni, G. (2016), "Mechanical metamaterials: the strength awakens", Nature Rev. Mater., 1(3), 1-1. https://doi.org/10.1038/natrevmats.2016.12.
  19. Ptochos, E. and Labeas, G. (2012), "Elastic modulus and Poisson's ratio determination of micro-lattice cellular structures by analytical, numerical and homogenisation methods", J. Sandw. Struct. Mater., 14(5), 597-626. https://doi.org/10.1177%2F1099636212444285. https://doi.org/10.1177%2F1099636212444285
  20. Singh, S.J. and Harsha, S.P. (2021), "Free vibration analysis of sandwich plate with honeycomb core and FGM face sheets", In Advances in Systems Engineering, 905-917. Springer, Singapore. https://doi.org/10.1007/978-981-15-8025-3_85.
  21. Sobhy, M. (2020), "Differential quadrature method for magnetohygrothermal bending of functionally graded graphene/Al sandwich-curved beams with honeycomb core via a new higherorder theory", J. Sandw. Struct. Mater., 1099636219900668. https://doi.org/10.1177%2F1099636219900668. https://doi.org/10.1177%2F1099636219900668
  22. Surjadi, J.U., Gao, L., Du, H., Li, X., Xiong, X., Fang, N.X. and Lu, Y. (2019), "Mechanical metamaterials and their engineering applications", Adv. Eng. Mater., 21(3), 1800864. https://doi.org/10.1002/adem.201800864.
  23. Teng, X.C., Ren, X., Zhang, Y., Jiang, W., Pan, Y., Zhang, X.G. and Xie, Y.M. (2022), "A simple 3D re-entrant auxetic metamaterial with enhanced energy absorption", Int. J. Mech. Sci., 229, 107524. https://doi.org/10.1016/j.ijmecsci.2022.107524
  24. Wadley, H.N. (2006), "Multifunctional periodic cellular metals. Philosophical Transactions of the Royal Society A: Mathematical", Phys. Eng. Sci., 364(1838), 31-68. https://doi.org/10.1098/rsta.2005.1697.
  25. Wang, Y.J., Zhang, Z.J., Xue, X.M. and Zhang, L. (2019), "Free vibration analysis of composite sandwich panels with hierarchical honeycomb sandwich core", Thin-Walled Struct., 145, 106425. https://doi.org/10.1016/j.tws.2019.106425.
  26. Zhang, Q., Yang, X., Li, P., Huang, G., Feng, S., Shen, C. and Lu, T.J. (2015), "Bioinspired engineering of honeycomb structure- Using nature to inspire human innovation", Progress in Materials Science, 74, 332-400. https://doi.org/10.1016/j.pmatsci.2015.05.001.
  27. Zhang, Z.J., Han, B., Zhang, Q.C. and Jin, F. (2017), "Free vibration analysis of sandwich beams with honeycombcorrugation hybrid cores", Compos. Struct., 171, 335-344. https://doi.org/10.1016/j.compstruct.2017.03.045.
  28. Zhu, X., Zhang, J., Zhang, W. and Chen, J. (2019), "Vibration frequencies and energies of an auxetic honeycomb sandwich plate", Mech. Adv. Mater. Struct., 26(23), 1951-1957. https://doi.org/10.1080/15376494.2018.1455933.