References
- Abdelrahman, A.A., Abd-El-Mottaleb, H.E. and Eltaher, M.A. (2020), "On bending analysis of perforated microbeams including the microstructure effects", Struct. Eng. Mech., 76(6), 765. http://dx.doi.org/10.12989/sem.2020.76.6.765.
- Barati, M.R. and Shahverdi, H. (2022), "Vibration frequencies of meta-material plates based on the numerical calibration of shape factor for various cell patterns", Waves Random Complex Media, 1-19. https://doi.org/10.1080/17455030.2022.2046300.
- Cai, W. and Shalaev, V.M. (2010), "Optical metamaterials, New York, Springer. https://doi.org/10.1007/978-1-4419-1151-3.
- Del Vescovo, D. and Giorgio, I. (2014), "Dynamic problems for metamaterials: review of existing models and ideas for further research", Int. J. Eng. Sci., 80, 153-172. https://doi.org/10.1016/j.ijengsci.2014.02.022.
- Donaldson, L. (2013), "Metamaterials help thermal flow", Mater. Today, 6(16), 207. https://doi.org/10.1016/j.mattod.2013.06.015.
- Dong, C. (2006), "Effective elastic properties of doubly periodic array of inclusions of various shapes by the boundary element method", Int. J. Solids Struct., 43(25-26), 7919-7938. https://doi.org/10.1016/j.ijsolstr.2006.04.009.
- Findeisen, C., Forest, S., Hohe, J. and Gumbsch, P. (2020), "Discrete and continuum modelling of size effects in architectured unstable metamaterials", Continuum Mech. Thermodyn, 1-17. https://doi.org/10.1007/s00161-020-00870-8.
- Gao, S., Wang, C. and Zhao, Z. (2019), "Mechanical properties of ZrO2 honeycomb sandwich structures by 3D printing", In IOP Conference Series: Materials Science and Engineering, 678(1) 012018. IOP Publishing. https://doi.org/10.1088/1757-899X/678/1/012018.
- Gibson, L.J., Ashby, M.F., Schajer, G.S. and Robertson, C.I. (1982), "The mechanics of two-dimensional cellular materials", Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 382(1782), 25-42. https://doi.org/10.1098/rspa.1982.0087.
- Gibson, L.J. and Ashby, M.F. (1997), Cellular Solids: Structures and Properties. Cambridge, UK: Cambridge University Press, https://doi.org/10.1557/mrs2003.79.
- Hohe, J. and Becker, W. (1999), "Effective elastic properties of triangular grid structures", Compos. Struct., 45(2), 131-145. https://doi.org/10.1016/S0263-8223(99)00016-1.
- Jhung, M.J. and Jeong, K.H. (2015), "Free vibration analysis of perforated plate with square penetration pattern using equivalent material properties", Nuclear Eng. Technol., 47(4), 500-511. https://doi.org/10.1016/j.net.2015.01.012.
- Jiao, P. and Alavi, A.H. (2018), "Buckling analysis of graphenereinforced mechanical metamaterial beams with periodic webbing patterns", Int. J. Eng. Sci., 131, 1-18. https://doi.org/10.1016/j.ijengsci.2018.06.005
- Khan, M.K., Baig, T. and Mirza, S. (2012), "Experimental investigation of in-plane and out-of-plane crushing of aluminum honeycomb", Mater. Sci. Eng.: A, 539, 135-142. https://doi.org/10.1016/j.msea.2012.01.070.
- Li, X. and Gao, H. (2016), "Mechanical metamaterials: Smaller and stronger", Nature Mater., 15(4), 373-374. https://doi.org/10.1038/nmat4591.
- Li, Y., Zi, H., Wu, X. and Zhu, L. (2020), "Flexural wave propagation and vibration isolation characteristics of sandwich plate-type elastic metamaterials", J. Vib. Control, 1077546320942689. https://doi.org/10.1177%2F1077546320942689. https://doi.org/10.1177%2F1077546320942689
- Ma, G. and Sheng, P. (2016), "Acoustic metamaterials: From local resonances to broad horizons", Sci. Adv., 2(2), e1501595. https://doi.org/10.1126/sciadv.1501595.
- Pacchioni, G. (2016), "Mechanical metamaterials: the strength awakens", Nature Rev. Mater., 1(3), 1-1. https://doi.org/10.1038/natrevmats.2016.12.
- Ptochos, E. and Labeas, G. (2012), "Elastic modulus and Poisson's ratio determination of micro-lattice cellular structures by analytical, numerical and homogenisation methods", J. Sandw. Struct. Mater., 14(5), 597-626. https://doi.org/10.1177%2F1099636212444285. https://doi.org/10.1177%2F1099636212444285
- Singh, S.J. and Harsha, S.P. (2021), "Free vibration analysis of sandwich plate with honeycomb core and FGM face sheets", In Advances in Systems Engineering, 905-917. Springer, Singapore. https://doi.org/10.1007/978-981-15-8025-3_85.
- Sobhy, M. (2020), "Differential quadrature method for magnetohygrothermal bending of functionally graded graphene/Al sandwich-curved beams with honeycomb core via a new higherorder theory", J. Sandw. Struct. Mater., 1099636219900668. https://doi.org/10.1177%2F1099636219900668. https://doi.org/10.1177%2F1099636219900668
- Surjadi, J.U., Gao, L., Du, H., Li, X., Xiong, X., Fang, N.X. and Lu, Y. (2019), "Mechanical metamaterials and their engineering applications", Adv. Eng. Mater., 21(3), 1800864. https://doi.org/10.1002/adem.201800864.
- Teng, X.C., Ren, X., Zhang, Y., Jiang, W., Pan, Y., Zhang, X.G. and Xie, Y.M. (2022), "A simple 3D re-entrant auxetic metamaterial with enhanced energy absorption", Int. J. Mech. Sci., 229, 107524. https://doi.org/10.1016/j.ijmecsci.2022.107524
- Wadley, H.N. (2006), "Multifunctional periodic cellular metals. Philosophical Transactions of the Royal Society A: Mathematical", Phys. Eng. Sci., 364(1838), 31-68. https://doi.org/10.1098/rsta.2005.1697.
- Wang, Y.J., Zhang, Z.J., Xue, X.M. and Zhang, L. (2019), "Free vibration analysis of composite sandwich panels with hierarchical honeycomb sandwich core", Thin-Walled Struct., 145, 106425. https://doi.org/10.1016/j.tws.2019.106425.
- Zhang, Q., Yang, X., Li, P., Huang, G., Feng, S., Shen, C. and Lu, T.J. (2015), "Bioinspired engineering of honeycomb structure- Using nature to inspire human innovation", Progress in Materials Science, 74, 332-400. https://doi.org/10.1016/j.pmatsci.2015.05.001.
- Zhang, Z.J., Han, B., Zhang, Q.C. and Jin, F. (2017), "Free vibration analysis of sandwich beams with honeycombcorrugation hybrid cores", Compos. Struct., 171, 335-344. https://doi.org/10.1016/j.compstruct.2017.03.045.
- Zhu, X., Zhang, J., Zhang, W. and Chen, J. (2019), "Vibration frequencies and energies of an auxetic honeycomb sandwich plate", Mech. Adv. Mater. Struct., 26(23), 1951-1957. https://doi.org/10.1080/15376494.2018.1455933.