DOI QR코드

DOI QR Code

EXISTENCE, UNIQUENESS AND HYERS-ULAM-RASSIAS STABILITY OF IMPULSIVE FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION WITH BOUNDARY CONDITION

  • MALAR, K. (Department of Mathematics, Erode Arts and Science College) ;
  • GOWRISANKAR, C. (Department of Mathematics, Erode Arts and Science College)
  • Received : 2021.12.22
  • Accepted : 2022.08.25
  • Published : 2022.09.30

Abstract

This paper focuses on the existence and uniqueness outcome for fractional integro-differential equation (FIDE) among impulsive edge condition and Hyers-Ulam-Rassias Stability (HURS) by using fractional calculus and some fixed point theorem in some weak conditions. The outcome procured in this paper upgrade and perpetuate some studied solutions.

Keywords

References

  1. R.P. Agarwal, M. Benchohra, and S. Hamanani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math. 109 (2010), 973-1033. https://doi.org/10.1007/s10440-008-9356-6
  2. M. Akkouchi, Hyers-Ulam-Rassias stability of nonlinear Volterra integral equations via a fixed point approach, Acta Univ. Apulensis Math. Inform. 26 (2011), 257-266.
  3. A. Anguraj, P. Karthikeyan, G.M. NGuerekata, Nonlocal Cauchy problem for some fractional abstract integrodifferential equations in Banach space, Commn. Math. Anal. 6 (2009), 1-6.
  4. A. Anguraj, A. Vinodkumar , K. Malar, Existence and Stability Results for Random Impulsive Fractional Pantograph Equations, Faculty of Sciences and Mathematics, University of Nis, Serbia, 2016, 3839-3854.
  5. D. Baleanu, Z.B. Gunvenuc, J.A.T. Machdo, New Trends in Nenotechnology and Fractional Calculus Applications, Springer, Berlin, 2010.
  6. D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, World Scientific, Singapore, 2012.
  7. D. Baleanu, J.A. Tenreiro Machado, A.C.J. Luo, Fractional Dynamics and Control, Springer, Berlin, 2012.
  8. B. Bonilla, M. Rivero, L. Rodriguez-Germa, J.J. Trujillo, Fractional differential equations as alternative models to nonlinear differential equations, Applied Mathematics and Computation 86 (2007), 79-88.
  9. L. Cadariu, V. Radu, Fixed points and the stability of Jensens functional equation, J. Inequal. Pure Appl. Math. 4 (2003).
  10. D.N. Chalishajar, K. Malar, R. Ilavarasi, Existence and Controllability Results of Impulsive Neutral Fractional Intergro-diferential Equations with Sectorial operator and Infinite Delay, Journal of Dynamics of Continuous, Discrete and Impulsive system series A: Mathematical Analysis 28 (2011), 77-106.
  11. J.B. Diaz, B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305-309. https://doi.org/10.1090/S0002-9904-1968-11933-0
  12. K. Diethelm, A.D. Freed, On the solution of nonlinear fractional order differential equation used in the modeling of viscoplasticity,in: F.keil, W.Maskens,H.Voss(Eds).Scientific computing in chemical Engineering II-Computational Fluid Dynamics and Molecular Properties, Springer-Verlag, Heideberg, 1999.
  13. D.H. Hyers, On the stability of the linear functional equations, Proc. Nat. Acad. Sci. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
  14. S.M. Jung, A fixed point approach to the stability of differential equations y'(t) = G(x,y), Bull. Malays. Math. Sci. Soc. 33 (2010), 47-56.
  15. P. Karthikeyan, Some results for boundary value problem of an integrodifferential equations with fractional order, Dynamic Systems and Applications 20 (2004), 17-24.
  16. K. Karthikeyan, J.J. Trujillo, Existence and uniqueness results for fractional integrodifferential equations with boundary value conditions, Communications in Nonlinear Science and Numerical Simulation 17 (2012), 4037-4043. https://doi.org/10.1016/j.cnsns.2011.11.036
  17. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential equations, Elsevier, Amsterdam, 2006.
  18. J. Klamka, Controllability of Dynamical Systems, Kluwer Academic, Dordrecht, 1993.
  19. V. Lakshmikantham, S. Leela, J. Vasundhara Devi, Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers, Cambridge, 2009.
  20. V. Lakshmikantham, A.S. Vatsala, Basic theory of fractional differential equation, Nonlinear Anal. 69 (2008), 2677-2682. https://doi.org/10.1016/j.na.2007.08.042
  21. V. Lakshmikantham, Theory of fractional functional differential equations, Nonlinear Anal. 69 (2008), 3337-3343. https://doi.org/10.1016/j.na.2007.09.025
  22. W. Lin, Global existence theory and chaos control of fractional differential equation, J. Math. Anal. Appl. 332 (2007), 709-726. https://doi.org/10.1016/j.jmaa.2006.10.040
  23. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equation, Wiley, New York, 1993.
  24. P. Muniyappan, S. Rajan, Hyers-Ulam-Rassias stability of fractional differential equations, Internat. J. Pure Appl. Math. 102 (2015), 631-642.
  25. P. Muniyappan, S. Rajan, Stability of a class of fractional integro-differential equation with nonlocal initial condition, Acta. Math. Univ. comenianae LXXXVII 1 (2018), 85-95.
  26. P. Muniyappan, S. Rajan, Stbility of a class of fractional integro differential equation, Fixed Point Theory 20 (2019), 591-600. https://doi.org/10.24193/fpt-ro.2019.2.39
  27. A. Pazy, Semigroups of Linear operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
  28. I. Podlubny, Fractional Differential Equations, San Diego Academic Press, New York, 1999.
  29. S. Rajan, P. Muniyappan, C. Park, S. Yun, J.R. Lee, Stability of fractional differential equation with boundary conditions, J. Comp. Anal and Appl. 23-4 (2017), 750-757.
  30. Th.M. Rassias, On the stability of linear mappig in Banach spaces, Proc. Amer. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  31. D.R. Smart, Fixed point Theorems, Cambridge University Press, Cambridge 66, 1980.
  32. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and derivatives, Theory and Applications, Gordon and Breach Yverden, 1993.
  33. D. Tamizharasan, K. Karthikeyan, Controllability results for fractional integrodifferential systems with boundary conditions, Indian J. Pure Appl. Math. 52 (2021), 39-45. https://doi.org/10.1007/s13226-021-00129-1
  34. S.M. Ulam, Problems in Modern Mathematics, Rend. Chap.VI, Wiley, New York, 1940.
  35. A. Vinodkumar, K. Malar, M. Gowrisankar, P. Mohankumar, Existence, uniqueness and stability of random impulsive fractional differential equations, Journal of Acta Mathematica Scientia 36 (2006), 428-442.
  36. S. Zhang, Positive solutions for boundary value problems for nonlinear fractional differential equations, Elec. J. Diff. Eqn. 36 (2006), 1-12.
  37. Y. Zhou, F. Jiao, F. Li, Existence and uniqueness for fractional neutral differential equations with infinite delay, Nonlinear Analysis 71 (2009), 3249-3256. https://doi.org/10.1016/j.na.2009.01.202
  38. Y. Zhou, F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl. 59 (2010), 1063-1077. https://doi.org/10.1016/j.camwa.2009.06.026