References
- R.P. Agarwal, M. Benchohra, and S. Hamanani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math. 109 (2010), 973-1033. https://doi.org/10.1007/s10440-008-9356-6
- M. Akkouchi, Hyers-Ulam-Rassias stability of nonlinear Volterra integral equations via a fixed point approach, Acta Univ. Apulensis Math. Inform. 26 (2011), 257-266.
- A. Anguraj, P. Karthikeyan, G.M. NGuerekata, Nonlocal Cauchy problem for some fractional abstract integrodifferential equations in Banach space, Commn. Math. Anal. 6 (2009), 1-6.
- A. Anguraj, A. Vinodkumar , K. Malar, Existence and Stability Results for Random Impulsive Fractional Pantograph Equations, Faculty of Sciences and Mathematics, University of Nis, Serbia, 2016, 3839-3854.
- D. Baleanu, Z.B. Gunvenuc, J.A.T. Machdo, New Trends in Nenotechnology and Fractional Calculus Applications, Springer, Berlin, 2010.
- D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, World Scientific, Singapore, 2012.
- D. Baleanu, J.A. Tenreiro Machado, A.C.J. Luo, Fractional Dynamics and Control, Springer, Berlin, 2012.
- B. Bonilla, M. Rivero, L. Rodriguez-Germa, J.J. Trujillo, Fractional differential equations as alternative models to nonlinear differential equations, Applied Mathematics and Computation 86 (2007), 79-88.
- L. Cadariu, V. Radu, Fixed points and the stability of Jensens functional equation, J. Inequal. Pure Appl. Math. 4 (2003).
- D.N. Chalishajar, K. Malar, R. Ilavarasi, Existence and Controllability Results of Impulsive Neutral Fractional Intergro-diferential Equations with Sectorial operator and Infinite Delay, Journal of Dynamics of Continuous, Discrete and Impulsive system series A: Mathematical Analysis 28 (2011), 77-106.
- J.B. Diaz, B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305-309. https://doi.org/10.1090/S0002-9904-1968-11933-0
- K. Diethelm, A.D. Freed, On the solution of nonlinear fractional order differential equation used in the modeling of viscoplasticity,in: F.keil, W.Maskens,H.Voss(Eds).Scientific computing in chemical Engineering II-Computational Fluid Dynamics and Molecular Properties, Springer-Verlag, Heideberg, 1999.
- D.H. Hyers, On the stability of the linear functional equations, Proc. Nat. Acad. Sci. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- S.M. Jung, A fixed point approach to the stability of differential equations y'(t) = G(x,y), Bull. Malays. Math. Sci. Soc. 33 (2010), 47-56.
- P. Karthikeyan, Some results for boundary value problem of an integrodifferential equations with fractional order, Dynamic Systems and Applications 20 (2004), 17-24.
- K. Karthikeyan, J.J. Trujillo, Existence and uniqueness results for fractional integrodifferential equations with boundary value conditions, Communications in Nonlinear Science and Numerical Simulation 17 (2012), 4037-4043. https://doi.org/10.1016/j.cnsns.2011.11.036
- A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential equations, Elsevier, Amsterdam, 2006.
- J. Klamka, Controllability of Dynamical Systems, Kluwer Academic, Dordrecht, 1993.
- V. Lakshmikantham, S. Leela, J. Vasundhara Devi, Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers, Cambridge, 2009.
- V. Lakshmikantham, A.S. Vatsala, Basic theory of fractional differential equation, Nonlinear Anal. 69 (2008), 2677-2682. https://doi.org/10.1016/j.na.2007.08.042
- V. Lakshmikantham, Theory of fractional functional differential equations, Nonlinear Anal. 69 (2008), 3337-3343. https://doi.org/10.1016/j.na.2007.09.025
- W. Lin, Global existence theory and chaos control of fractional differential equation, J. Math. Anal. Appl. 332 (2007), 709-726. https://doi.org/10.1016/j.jmaa.2006.10.040
- K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equation, Wiley, New York, 1993.
- P. Muniyappan, S. Rajan, Hyers-Ulam-Rassias stability of fractional differential equations, Internat. J. Pure Appl. Math. 102 (2015), 631-642.
- P. Muniyappan, S. Rajan, Stability of a class of fractional integro-differential equation with nonlocal initial condition, Acta. Math. Univ. comenianae LXXXVII 1 (2018), 85-95.
- P. Muniyappan, S. Rajan, Stbility of a class of fractional integro differential equation, Fixed Point Theory 20 (2019), 591-600. https://doi.org/10.24193/fpt-ro.2019.2.39
- A. Pazy, Semigroups of Linear operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
- I. Podlubny, Fractional Differential Equations, San Diego Academic Press, New York, 1999.
- S. Rajan, P. Muniyappan, C. Park, S. Yun, J.R. Lee, Stability of fractional differential equation with boundary conditions, J. Comp. Anal and Appl. 23-4 (2017), 750-757.
- Th.M. Rassias, On the stability of linear mappig in Banach spaces, Proc. Amer. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- D.R. Smart, Fixed point Theorems, Cambridge University Press, Cambridge 66, 1980.
- S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and derivatives, Theory and Applications, Gordon and Breach Yverden, 1993.
- D. Tamizharasan, K. Karthikeyan, Controllability results for fractional integrodifferential systems with boundary conditions, Indian J. Pure Appl. Math. 52 (2021), 39-45. https://doi.org/10.1007/s13226-021-00129-1
- S.M. Ulam, Problems in Modern Mathematics, Rend. Chap.VI, Wiley, New York, 1940.
- A. Vinodkumar, K. Malar, M. Gowrisankar, P. Mohankumar, Existence, uniqueness and stability of random impulsive fractional differential equations, Journal of Acta Mathematica Scientia 36 (2006), 428-442.
- S. Zhang, Positive solutions for boundary value problems for nonlinear fractional differential equations, Elec. J. Diff. Eqn. 36 (2006), 1-12.
- Y. Zhou, F. Jiao, F. Li, Existence and uniqueness for fractional neutral differential equations with infinite delay, Nonlinear Analysis 71 (2009), 3249-3256. https://doi.org/10.1016/j.na.2009.01.202
- Y. Zhou, F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl. 59 (2010), 1063-1077. https://doi.org/10.1016/j.camwa.2009.06.026