
J. Appl. Math. & Informatics Vol. 40(2022), No. 5 - 6, pp. 959 - 977
https://doi.org/10.14317/jami.2022.959

UPHILL ZAGREB INDICES OF SOME GRAPH OPERATIONS
FOR CERTAIN GRAPHS
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Abstract. The topological indices are numerical parameters which deter-
mined the biological, physical and chemical properties based on the struc-
ture of the chemical compounds. One of the recently topological indices is
the uphill Zagreb indices. In this paper, the formulae of some uphill Zagreb
indices for a few graph operations of some graphs have been derived. Fur-
thermore, the precise formulae of those indices for the honeycomb network
have been found along with their graphical profiles.
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1. Introduction

In this research, by graphs, we mean undirected finite simple graph. We de-
note G = (V,E) for a graph, where V is the set of vertices and E is the set
of edges. For a vertex v ∈ V (G) the degree of v, d(v) is the number of edges
incident with v. Any terminology or notation which, we did not mention its
definition, we refer the reader to [2].
Topological indices have a widespread position specifically in pharmacology,
chemistry, networks and many others, (see[5, 6, 9, 10, 16, 11, 14, 20, 21, 22]).
Most of the indices of contemporary are interesting in mathematical chemistry
are introduced based on vertex degrees of the chemical graph. The two well-
known topological indices of graphs are the Zagreb indices that have been in-
troduced by Gutman and Trinajstic by their work in [12], and described as
M1 (G) =

∑
u∈V (G) (d (u))

2 and M2 (G) =
∑
uv∈E(G) d (u) d (v), respectively.

The forgotten topological index was introduced by Furtula and Gutman [7] as
F (G) =

∑
u∈V (G) (d (u))

3.
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Zagreb indices were studied considerably due to their numerous applications
inside the area of present chemical methods which want extra time and more
charges. Many new reformulated and prolonged versions of the Zagreb indices
have been delivered for several similar reasons, (cf. [1, 3, 8, 15, 18, 23, 24, 25]).
Recently in [19], Anwar Saleh et al., have introduced four new topological indices;
first uphill, second uphill, modified uphill and forgotten uphill indices. Graph
operations are very important to constricting new graphs and they play a vital
role in the design and analysis of networks. In this research work motivated
by the uphill indices and the importance of graph operations we find exact
formulae of graph operations; join, corona product and Cartesian product for
certain graphs and finally for the honeycomb network.

2. Some Results on the Uphill Zagreb Indices of Graphs

Definition 2.1. [4] For any graph G = (V,E). A path u − v is a sequence of
vertices in G, initialing with u and terminal at v, such that sequential vertices
are adjacent, and no vertex is repeated. A path Π = v1, v2, ...vk+1 in G is an
uphill path if for every i,1 ≤ i ≤ k, deg(vi) ≤ deg(vi+1) .
For any vertices u and v in G,if there is an uphill path from u to v we say that
u is uphill adjacent to v.

Definition 2.2. [19] A vertex v is uphill dominates a vertex u i a graph G if
v uphill adjacent to u. An uphill neighborhood of the vertex v is denoted by
Nup(v) and described as: Nup(v) = {u : v is uphill adjacent tou}. The uphill
degree of the vertex v, denoted by dup(v), is the number of vertices which v is
uphill adjacent to them, which means dup(v) = |Nup(v)|.
The uphill closed neighborhood, Nup[v], of the vertex v is the uphill open neigh-
borhood of v together with the vertex v.
The maximum and minimum uphill degrees in the graph are denoted by ∆up(G)
and δup(G), respectively. The vertex with uphill degree equals to zero is called
uphill isolated vertex.

In this paper by Ex,y, we mean that Ex,y = {uv ∈ E(G) : dup(u) = x and
dup(v) = y}.

Definition 2.3. [19]. For any graph G = (V,E) the first uphill Zagreb, second
uphill Zagreb, forgotten uphill Zagreb index and modified first uphill Zagreb are
defined as:

UPM1(G) =
∑

v∈V (G)

(dup(v))
2,

UPM2(G) =
∑

vu∈E(G)

dup(v)dup(u),

UPM∗
1 (G) =

∑
vu∈E(G)

(dup(v) + dup(u))
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and
UPF (G) =

∑
v∈V (G)

(dup(v))
3.

A join G = G1+G2 of two graphs G1 and G2 has vertex set V (G) = V (G1)∪
V (G2) and edge set E(G) = E(G1) ∪E(G2) ∪ {uv : u ∈ V (G1), v ∈ V (G2)}[13].

Theorem 2.4. Let G ∼= Pm+Pm−s, where m− s ≥ 3 be a join graph of 2m− s
vertices. Then,

UPM1(G) =


8m3 − 40m2 + 114m− 96 if s = 0;

5m3 − 19m2 + 32m− 30 if s = 1;

Γ if s ≥ 2.

where, Γ = 5m3 − 7m2s− 18m2 + 4ms2 + 18ms+ 30m− s3 − 6s2 − 17s− 20.

Proof. Let G ∼= Pm+Pm−s, where m− s ≥ 3 be a join graph of 2m− s vertices.
We have three cases:
Case 1. If s = 0. The graph G has four vertices of uphill degree 2m − 1 and
2(m− 2) vertices of uphill degree 2m− 5. Then,

UPM1(G) = 4(2m− 1)2 + 2(m− 2)(2m− 5)2

= 8m3 − 40m2 + 114m− 96.

Case 2. If s = 1. Then there are two vertices of uphill degree 2m−3, m vertices
of uphill degree 2m− 4 and m− 3 vertices of uphill degree m− 4. So,

UPM1(G) = 2(2m− 3)2 +m(2m− 4)2 + (m− 3)(m− 4)2

= 5m3 − 19m2 + 32m− 30.

Case 3. If s ≥ 2. There are two vertices of uphill degree 2m − s − 2, m − 2
vertices of uphill degree 2m− s− 3, two vertices of uphill degree m− s− 2 and
m− s− 2 vertices of uphill degree m− s− 3. Then,
UPM1(G) = 2(2m−s−2)2+(m−2)(2m−s−3)2+2(m−s−2)2+(m−s−2)(m−s−3)2

= 5m3 − 7m2s− 18m2 + 4ms2 + 18ms+ 30m− s3 − 6s2 − 17s− 20.

□

Theorem 2.5. Let G ∼= Pm+Pm−s, where m− s ≥ 3 be a join graph of 2m− s
vertices. Then,

UPM2(G) =


4m4 − 12m3 + 9m2 + 42m− 66 if s = 0;

2m4 − 5m3 − 6m2 + 38m− 48 if s = 1;

Γ if s ≥ 2.

where, Γ = 2m4 − 5m3s − 4m3 + 4m2s2 + 8m2s − 8m2 + 9ms + 30m −ms3 −
2ms2 − s3 − 6s2 − 19s− 26.
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Proof. Let G ∼= Pm+Pm−s, where m− s ≥ 3 be a join graph of 2m− s vertices.
We have three cases:
Case 1. If s = 0. In this case, there are three types of edges

Table 1. Edge partition of Pm + Pm−s graph based on uphill
degree of end vertices.

Type Number of edges

E2m−1,2m−1 4

E2m−1,2m−5 4(m− 1)

E2m−5,2m−5 m2 − 2m− 2

Now, by using the edge partition in Table 1, we get

UPM2(G)) = 4(2m− 1)2+4(m− 1)(2m− 1)(2m− 5)+ (m2− 2m− 2)(2m− 5)2

= 4m4 − 12m3 + 9m2 + 42m− 66.

Case 2. If s = 1. In this case, there are six types of edges

Table 2. Edge partition of Pm + Pm−s graph based on uphill
degree of end vertices.

Type Number of edges

E2m−4,2m−4 3m− 7

Em−4,m−4 m− 4

E2m−3,2m−4 6

E2m−3,m−4 2(m− 3)

E2m−4,m−4 (m− 2)(m− 3) + 2

Now, by using the edge partition given in Table 2, we get

UPM2(G)) = (3m− 7)(2m− 4)2 + (m− 4)3 + 6(2m− 3)(2m− 4)

+ 2(m− 3)(2m− 3)(m− 4) + ((m− 2)(m− 3) + 2)(2m− 4)(m− 4)

= 2m4 − 5m3 − 6m2 + 38m− 48.

Case 3. If s ≥ 2. In this case, there are eight types of edges
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Table 3. Edge partition of Pm + Pm−s graph based on uphill
degree of end vertices.

Type Number of edges

E2m−s−2,m−s−2 4

E2m−s−2,m−s−3 2(m− s− 2)

E2m−s−3,m−s−2 2(m− 2)

E2m−s−3,m−s−3 (m− 2)(m− s− 2)

E2m−s−2,2m−s−3 2

E2m−s−3,2m−s−3 m− 3

Em−s−2,m−s−3 2

Em−s−3,m−s−3 m− s− 3

Now, by using the edge partition in Table 3, we get

UPM2(G)

= 4(2m− s− 2)(m− s− 2) + 2(m− s− 2)(2m− s− 2)(m− s− 3)

+ 2(m− 2)(2m− s− 3)(m− s− 2) + (m− 2)(m− s− 2)(2m− s− 3)(m− s− 3)

+ 2(2m− s− 2)(2m− s− 3) + (m− 3)(2m− s− 3)2

+ 2(m− s− 2)(m− s− 3) + (m− s− 3)3

= 2m4 − 5m3s− 4m3 + 4m2s2 + 8m2s− 8m2 + 9ms+ 30m−ms3 − 2ms2

− s3 − 6s2 − 19s− 26.

□

Theorem 2.6. Let G ∼= Pm+Pm−s, where m− s ≥ 3 be a join graph of 2m− s
vertices. Then,

UPM∗
1 (G) =


4m3 − 2m2 − 12m+ 36 if s = 0;

3m3 − 7m2 + 8m if s = 1;

3m3 − 14m+ 2s2 + 8s− 5m2s+ 2ms2 + 16 if s ≥ 2.

Proof. In the same way as Theorem 2.5. □



964 Anwar Saleh, Sara Bazhear and Najat Muthana

Theorem 2.7. Let G ∼= Pm+Pm−s, where m− s ≥ 3 be a join graph of 2m− s
vertices. Then,

UPF (G) =


16m4 − 120m3 + 492m2 − 826m+ 496 if s = 0;

9m4 − 47m3 + 108m2 − 164m+ 138 if s = 1;

Γ if s ≥ 2.

where, Γ = 9m4 − 16m3s− 45m3 +12m2s2 +63m2s+111m2 − 5ms3 − 36ms2 −
117ms− 144m+ s4 + 9s3 + 39s2 + 87s+ 76.

Proof. Similarly as in Theorem 2.4. □

Proposition 2.8. Let G ∼= Cm+Cn, where 3 ≤ n < m be a join graph of n+m
vertices. Then,

i. UPM1(G) = 2m2n+m3 − 2m2 +mn2 − 2mn+m+ n3 − 2n2 + n,

ii. UPM2(G) = m3+m2n2+m2n−2m2+mn3−mn2−mn+m+n3−2n2+n,

iii. UPM∗
1 (G) = 2m2 − 2m+ 2n2 − 2n+m2n+ 2mn2,

iv. UPF (G) = m4 + 3m3n − 3m3 + 3m2n2 − 6m2n + 3m2 + mn3 − 3mn2 +
3mn−m+ n4 − 3n3 + 3n2 − n.

Proof. Let G ∼= Cm + Cn. There are m vertices of uphill degree m+ n− 1 and
n vertices of uphill degree n− 1. Then,

UPM1(G) = m(m+ n− 1)2 + n(n− 1)2

= 2m2n+m3 − 2m2 +mn2 − 2mn+m+ n3 − 2n2 + n.

Similarly, we get
UPF (G) = m(m+ n− 1)3 + n(n− 1)3

= m4+3m3n−3m3+3m2n2−6m2n+3m2+mn3−3mn2+3mn−m+n4−3n3+3n2−n.

Table 4. Edge partition of Cm + Cn graph based on uphill
degree of end vertices.

Type Number of edges

Em+n−1,m+n−1 m

En−1,n−1 n

Em+n−1,n−1 nm

Now, by using the edge partition in Table 4, we get
UPM2(G)) = (m+ n− 1)2m+ (n− 1)2n+ (n− 1)(m+ n− 1)nm



UZI of Certain Graphs 965

= m3 +m2n2 +m2n− 2m2 +mn3 −mn2 −mn+m+ n3 − 2n2 + n.

Similarly, we get

UPM∗
1 (G) = 2m2 − 2m+ 2n2 − 2n+m2n+ 2mn2

□

Theorem 2.9. Let G ∼= Cm+s + Pm, where m ≥ 3 be a join graph of 2m + s
vertices. Then,

UPM1(G) =


8m3 − 24m2 + 26m− 10 if s = 0;

5m3 + 4m2 + 21m− 18 if s = 1;

Γ if s ≥ 2.

where, Γ = 5m3 + 8sm2 − 10m2 + 5ms2 + 14m− 6ms+ s3 + s− 2s2 − 10.

Proof. Let G ∼= Cm+s + Pm, where m ≥ 3 be a join graph of 2m + s vertices.
We have three cases:
Case 1. If s = 0 . There are 2m − 2 vertices of uphill degree 2m − 3 and two
vertices of uphill degree 2m− 2. So,

UPM1(G) = (2m− 2)(2m− 3)2 + 2(2m− 2)2

= 8m3 − 24m2 + 26m− 10.

Case 2. If s = 1. There are m + 3 vertices of uphill degree 2m and m − 2
vertices of uphill degree m− 3. Then,

UPM1(G) = (m+ 3)(2m)2 + (m− 2)(m− 3)2

= 5m3 + 4m2 + 21m− 18.

Case 3. If s ≥ 2. There are m + s vertices of uphill degree 2m + s − 1, two
vertices of uphill degree m− 2 and m− 2 vertices of uphill degree m− 3. Then,

UPM1(G) = (m+ s)(2m+ s− 1)2 + 2(m− 2)2 + (m− 2)(m− 3)2

= 5m3 + 8m2s− 10m2 + 5ms2 + 14m− 6ms+ s3 + s− 2s2 − 10.

□

Theorem 2.10. Let G ∼= Cm+s + Pm, where m ≥ 3 be a join graph of 2m + s
vertices. Then,

UPM2(G) =


4m4 − 4m3 − 15m2 + 28m− 15 if s = 0;

2m4 + 8m3 + 6m2 if s = 1;

Γ if s ≥ 2.

where, Γ = 2m4+3m3s−2m3+m2s2−2m2s−4m2+2ms2+3ms+16m+s3−s−15.
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Proof. Let G ∼= Cm+s + Pm, where m ≥ 3 be a join graph of 2m + s vertices.
We have three cases:
Case 1. If s = 0 . In this case, there are two types of edges

Table 5. Edge partition of Cm+s + Pm graph based on uphill
degree of end vertices.

Type Number of edges

E2m−3,2m−3 m2 − 3

E2m−3,2m−2 2m+ 2

Now, by using the partition in Table 5, we get

UPM2(G) = (m2 − 3)(2m− 3)2 + (2m+ 2)(2m− 3)(2m− 2)

= 4m4 − 4m3 − 15m2 + 28m− 15.

Case 2. If s = 1. In this case, there are three types of edges

Table 6. Edge partition of Cm+s + Pm graph based on uphill
degree of end vertices.

Type Number of edges

E2m,2m 3m+ 3

Em−3,m−3 m− 3

E2m,m−3 (m+ 1)(m− 2) + 2

Now, by using the partition in Table 6, we get

UPM2(G) = 2m2(m− 3)(m− 1)

= 2m4 + 8m3 + 6m2.

Case 3. If s ≥ 2. In this case, there are five types of edges
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Table 7. Edge partition of Cm+s + Pm graph based on uphill
degree of end vertices.

Type Number of edges

E2m+s−1,2m+s−1 m+ s

Em−2,m−3 2

Em−3,m−3 m− 3

E2m+s−1,m−2 2(m+ s)

E2m+s−1,m−3 (m− 2)(m+ s)

Now, by using the edge partition in Table 7, we get
UPM2(G) = (m+s)(2m+s−1)2+2(m−2)(m−3)+(m−3)3+2(m+s)(2m+s−1)(m−2)

+ (m− 2)(m+ s)(2m+ s− 1)(m− 3)

= 2m4 +3m3s− 2m3 +m2s2 − 2m2s− 4m2 +2ms2 +3ms+16m+ s3 − s− 15.

□
Theorem 2.11. Let G ∼= Cm+s + Pm, where m ≥ 3 be a join graph of 2m + s
vertices. Then,

UPM∗
1 (G) =


4m3 + 2m2 − 14m+ 8 if s = 0;

3m3 + 8m2 + 3m+ 18 if s = 1;

Γ if s ≥ 2.

where, Γ = 3m3 + 2m2 + 2ms− 8m+ 2s2 +ms2 + 4m2s+ 8.

Proof. Similarly as in Theorem 2.10. □
Theorem 2.12. Let G ∼= Cm+s + Pm, where m ≥ 3 be a join graph of 2m + s
vertices. Then,

UPF (G) =


16m4 − 72m3 + 132m2 − 114m+ 38 if s = 0;

9m4 + 13m3 + 45m2 − 81m+ 54 if s = 1;

Γ if s ≥ 2.

where, Γ = 9m4 + 20m3s − 21m3 + 18m2s2 + 39m2 − 24m2s + 7ms3 + 9ms −
15ms2 − 58m+ s4 + 3s2 + 38− 3s3 − s.

Proof. Similarly as in Theorem 2.9. □
Proposition 2.13. Let G ∼= Cn+Pm, where n,m ≥ 3 be a join graph of n+m
vertices, if n < m. Then,

i. UPM1(G) = n3 + n2m− 2n2 + 2nm2 + 5n− 6nm+m3 + 13m− 6m2 − 10,
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ii. UPM2(G) = n3 − 3(n + m − 3)2 + 2n2 − 11n + m(n + m − 3)2 + 7nm +
2m2 − 10m+ n3m+ n2m2 − nm2 − 4n2m+ 12,

iii. UPM∗
1 (G) = 2n2 − 2n− 8m+ nm2 − 2nm+ 2m2 + 2n2m+ 8,

iv. UPF (G) = n4+n3m−3n3+3n2m2+9n2−9n2m+3nm3+39nm−18nm2−
31n+m4 + 33m2 + 38− 9m3 − 57m.

Proof. Let G ∼= Cn+Pm . The graph G has n vertices of uphill degree n−1, two
vertices of uphill degree n+m− 2 and m− 2 vertices of uphill degree n+m− 3.
Then,

UPM1(G) = n(n− 1)2 + 2(n+m− 2)2 + (m− 2)(n+m− 3)2

= n3 + n2m− 2n2 + 2nm2 + 5n− 6nm+m3 + 13m− 6m2 − 10.

Similarly,
UPF (G) = n(n− 1)3 + 2(n+m− 2)3 + (m− 2)(n+m− 3)3

= n3 + n2m− 2n2 + 2nm2 + 5n− 6nm+m3 + 13m− 6m2 − 10.

Table 8. Edge partition of Cn + Pm graph based on uphill
degree of end vertices.

Type Number of edges

En−1,n−1 n

En+m−2,n+m−3 2

En+m−3,n+m−3 m− 3

En−1,n+m−2 2n

En−1,n+m−3 n(m− 2)

Now, by using the edge partition in Table 8, we get
UPM2(G)

= n(n− 1)2 + 2(n+m− 2)(n+m− 3) + (m− 3)(n+m− 3)2

+ 2n(n− 1)(n+m− 2) + n(m− 2)(n− 1)(n+m− 3)

= n3 − 3(n+m− 3)2 + 2n2 − 11n+m(n+m− 3)2 + 7nm+ 2m2 − 10m

+ n3m+ n2m2 − nm2 − 4n2m+ 12.

In the same way,
UPM∗

1 (G) = 2n2 − 2n− 8m+ nm2 − 2nm+ 2m2 + 2n2m+ 8.

□
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The Corona product G ◦H is defined as the graph obtained from G and H
by taking one copy of G and n1 copies of H and joining by an edge each vertex
from the ith-copy of H with the ith-vertex of G.[13]
Proposition 2.14. Let G ∼= Cn ◦ Pm, where n ≥ 3 and m ≥ 2 be a corona
product graph of n+ nm vertices. Then,

i. UPM1(G) = 2n(m+ n− 2)2 + n(m− 2)(m+ n− 3)2 + n(n− 1)2,

ii. UPM2(G) = 3n3−10n2+11n+n2m2+n3m+nm2−7nm+nm (m+ n− 3)
2−

3n (m+ n− 3)
2
,

iii. UPM∗
1 (G) = 8n− 12nm+ 3nm2 + 4n2m,

iv. UPF (G) = 2n(m+ n− 2)3 + n(m− 2)(m+ n− 3)3 + n(n− 1)3.

Proof. Let G ∼= Cn ◦ Pm, where n ≥ 3 and m ≥ 2 be a corona product graph of
n+nm vertices. Then there are 2n vertices of uphill degree m+n− 2, n(m− 2)
vertices of uphill degree m+ n− 3 and n vertices of uphill degree n− 1. So,

UPM1(G) = 2n(m+ n− 2)2 + n(m− 2)(m+ n− 3)2 + n(n− 1)2.

Then clearly,
UPF (G) = 2n(m+ n− 2)3 + n(m− 2)(m+ n− 3)3 + n(n− 1)3.

Table 9. Edge partition of Cn ◦ Pm graph based on uphill
degree of end vertices.

Type Number of edges

En−1,n−1 n

Em+n−2,m+n−3 2n

Em+n−3,m+n−3 n(m− 3)

Em+n−2,n−1 2n

Em+n−3,n−1 n(m− 2)

Now, by using the edge partition in Table 9, we get
UPM2(G)

= n(n− 1)2 + 2n(m+ n− 2)(m+ n− 3) + n(m− 3)(m+ n− 3)2

+ 2n(m+ n− 2)(n− 1) + n(m− 2)(m+ n− 3)(n− 1)

= 3n3 − 10n2 + 11n+ n2m2 + n3m+ nm2 − 7nm+ nm (m+ n− 3)
2

− 3n (m+ n− 3)
2
.
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Similarly we get,
UPM∗

1 (G) = 8n− 12nm+ 3nm2 + 4n2m.

□

The Cartesian product G of two graphs G1 and G2, denoted G1 × G2, has
vertex set V (G) = V (G1)× V (G2), and two distinct vertices (a, b) and (c, d) of
G1 ×G2 are adjacent if either a = c and bd ∈ E(G2), or b = d and ac ∈ (G1).

Proposition 2.15. Let G ∼= Pm□Pm, where m ≥ 3 be a Cartesian product
graph of m2 vertices. Then,

i. UPM1(G) = 4m2(m−2)2+4(m−2)(m2−3m+1)2+(m−2)2(m2−4m+3)2,

ii. UPM2(G) = 8(m2 − 2m)(m2 − 3m+1)+ 4(m− 3)(m2 − 3m+1)2 +4(m−
2)(m2 − 3m+ 1)(m2 − 4m+ 3) + (m− 3)(m− 2)(m2 − 4m+ 3)2,

iii. UPM∗
1 (G) = 2m4 − 2m3 − 18m2 + 34m− 12,

iv. UPF (G) = 4m3(m−2)3+4(m−2)(m2−3m+1)3+(m−2)2(m2−4m+3)3.

Proof. Let G ∼= Pm□Pm, where m ≥ 3 be a Cartesian product graph of m2

vertices. In Figure 1, we can see the graph G has four vertices are labeled
by (v1,1, v1,m, vm,1, vm,m) of uphill degree m(m − 2), 4(m − 2) vertices are la-
beled by (v1,2, v1,3, ..., v1,m−1), (vm,2, vm,3, ..., vm,m−1), (v2,1, v3,1, ..., vm−1,1) and
(v2,m, v3,m, ..., vm−1,m) of uphill degreem2−3m+1, (m−2)2 vertices are labeled
by (v2,2, v2,3, ..., v2,m−1), (v3,2, v3,3, ..., v3,m−1), ..., (vm−1,2, vm−1,3, ..., vm−1,m−1)
of uphill degree m2 − 4m+ 3. Then,
UPM1(G) = 4m2(m− 2)2 +4(m− 2)(m2 − 3m+1)2 +(m− 2)2(m2 − 4m+3)2.

Similarly,
UPF (G) = 4m3(m− 2)3 + 4(m− 2)(m2 − 3m+ 1)3 + (m− 2)2(m2 − 4m+ 3)3.

There are 4 types of edges.

Table 10. Edge partition of Pm□Pm graph based on uphill
degree of end vertices.

Type Number of edges

Em(m−2),m2−3m+1 8

Em2−3m+1,m2−3m+1 4(m− 3)

Em2−3m+1,m2−4m+3 4(m− 2)

Em2−4m+3,m2−4m+3 (m− 3)(m− 2)
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In Figure 1, the types of edges, Em(m−2),m2−3m+1, Em2−3m+1,m2−3m+1,
Em2−3m+1,m2−4m+3 and Em2−4m+3,m2−4m+3 are colored by red, blue, green and
yellow respectively.

Figure 1. Cartesian product graph Pm□Pm

Now, by using the partition in Table 10, we get
UPM2(G) = 8(m2−2m)(m2−3m+1)+4(m−3)(m2−3m+1)2+4(m−2)(m2−3m+1)

(m2 − 4m+ 3) + (m− 3)(m− 2)(m2 − 4m+ 3)2.

Similarly,
UPM∗

1 (G) = 2m4 − 2m3 − 18m2 + 34m− 12.

□

Proposition 2.16. For any ladder graph Ln = P2□Pn with 2n vertices and
3n− 2 edges, where n ≥ 3. Then,

i. UPM1(Ln) = 8n3 − 40n2 + 82n− 64,

ii. UPM2(Ln) = 12n3 − 68n2 + 147n− 122,

iii. UPM∗
1 (Ln) = 12n2 − 38n+ 36,

iv. UPF (Ln) = 16n4 − 120n3 + 396n2 − 634n+ 392.

Proof. For any ladder graph Ln = P2□Pn with 2n vertices and 3n − 2 edges,
where n ≥ 3. The graph Ln has four vertices of uphill degree 2n− 3 and 2n− 4
vertices of uphill degree 2n− 5. Then,

UPM1(Ln) = 8n3 − 40n2 + 82n− 64.
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Similarly,
UPF (Ln) = 16n4 − 120n3 + 396n2 − 634n+ 392.

There are three different types of edges; two edges of the type E2n−3,2n−3, four
edges of the type E2n−3,2n−5 and 3n− 8 edges of the type E2n−5,2n−5.Then,

UPM2(Ln) = 12n3 − 68n2 + 147n− 122.

In the same way,
UPM∗

1 (Ln) = 12n2 − 38n+ 36.

□

Proposition 2.17. Let G ∼= Cm□Pn, where m,n ≥ 3 be a stacked prism graph
of mn vertices. Then,

i. UPM1(G) = 2m(mn−m− 1)2 + (mn− 2m)(mn− 2m− 1)2,

ii. UPM2(G) = 2m(mn−m− 1)2 +2m(mn−m− 1)(mn− 2m− 1)+ (m(n−
2) +m(n− 3))(mn− 2m− 1)2,

iii. UPM∗
1 (G) = 4m2n2 − 10m2n+ 10m2 − 4mn+ 2m

iv. UPF (G) = 2m(mn−m− 1)3 + (mn− 2m)(mn− 2m− 1)3.

Proof. Let G ∼= Cm□Pn, where m,n ≥ 3 be a stacked prism graph of mn
vertices. The graph G has 2m vertices which are based in the inner and outer
circle of uphill degree mn−m− 1 and all the other vertices mn− 2m has uphill
degree mn− 2m− 1. Hence,

UPM1(G) = 2m(mn−m− 1)2 + (mn− 2m)(mn− 2m− 1)2.

Similarly,
UPF (G) = 2m(mn−m− 1)3 + (mn− 2m)(mn− 2m− 1)3.

There are three types of edges.

Table 11. Edge partition of Cm□Pn graph based on uphill
degree of end vertices.

Type Number of edges

Emn−m−1,mn−m−1 2m

Emn−m−1,mn−2m−1 2m

Emn−2m−1,mn−2m−1 m(n− 2) +m(n− 3)

In Figure 2, the types of edges, Emn−m−1,mn−m−1, Emn−m−1,mn−2m−1 and
Emn−2m−1,mn−2m−1 are colored by red, blue and green respectively.
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Figure 2. Stacked prism graph Cm□Pm

Now, by using the partition in Table 11, we get
UPM2(G)

= 2m(mn−m− 1)2 + 2m(mn−m− 1)(mn− 2m− 1) + (m(n− 2)

+m(n− 3))(mn− 2m− 1)2.

Similarly,
UPM∗

1 (G) = 4m2n2 − 10m2n+ 10m2 − 4mn+ 2m.

□
Honeycomb Networks[17]

Built recursively using the hexagon tessellation, honeycomb networks are widely
used in computer graphics, cellular phone base stations, image processing, and
in chemistry as the representation of benzenoid hydrocarbons.
Definition 2.18. [17] Honeycomb network HC(p) is obtained from HC(p− 1)
by adding a layer of hexagons around the boundary ofHC(p−1). The parameter
p of HC(p) is determined as the number of hexagons between the center and
boundary of HC(p). The number of vertices and edges of HC(p) are 6p2 and
9p2−3p respectively. In honeycomb network, there are 6p vertices of degree two
and the remaining vertices are of degree 3. There are three types of edges based
on the degree of the vertices of each edge.
Theorem 2.19. Let G be the honeycomb network HC(p) of dimension p with
6p2 vertices and 9p2 − 3p of edges. Then,

i. UPM1(G) = 12(6p2−6p+1)2+(6p−12)(6p2−6p)2+(6p2−6p)(6p2−6p−1)2,
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ii. UPM2(G) = 6(6p2−6p+1)2+12(6p2−6p+1)(6p2−6p−1)+(9p2−15p+
6)(6p2 − 6p− 1)2,

iii. UPM∗
1 (G) = 108p4 − 288p3 + 450p2 − 258p,

iv. UPF (G) = 12(6p2−6p+1)3+(6p−12)(6p2−6p)3+(6p2−6p)(6p2−6p−1)3.

Proof. Let G be the honeycomb network HC(p) of dimension p with 6p2 vertices
and 9p2 − 3p of edges. The graph G has 2p lines are named by L1, L2, ..., L2p

witch are based from up to down, it is clearly to see, L1 symmetric with L2p,
L2 symmetric with L2p−1 ... Lp symmetric with Lp+1. There are 12 vertices of
uphill degree 6p2−6p+1, 6p−12 vertices of uphill degree 6p2−6p and 6p2−6p
of uphill degree 6p2 − 6p− 1. Hence,

UPM1(G) = 12(6p2−6p+1)2+(6p−12)(6p2−6p)2+(6p2−6p)(6p2−6p−1)2.

In the same way we get,

UPF (G) = 12(6p2 − 6p+1)3 +(6p− 12)(6p2 − 6p)3 +(6p2 − 6p)(6p2 − 6p− 1)3.

In the following table there are four types of edges.

Table 12. Edge partition of HC(p) graph based on uphill de-
gree of end vertices.

Type Number of edges

E6p2−6p+1,6p2−6p+1 6

E6p2−6p+1,6p2−6p−1 12

E6p2−6p,6p2−6p−1 12p− 24

E6p2−6p−1,6p2−6p−1 9p2 − 15p+ 6

In Figure 3, the types of edges, E6p2−6p+1,6p2−6p+1,
E6p2−6p+1,6p2−6p−1, E6p2−6p,6p2−6p−1 and E6p2−6p−1,6p2−6p−1 are colored by red,
blue, green and black respectively.
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.

Figure 3. Honeycomb network HC(4)

Now, by using the partition in Table 12, we get

UPM2(G)

= 6(6p2 − 6p+ 1)2 + 12(6p2 − 6p+ 1)(6p2 − 6p− 1)

+ (9p2 − 15p+ 6)(6p2 − 6p− 1)2.

Similarly, we get

UPM∗
1 (G) =

∑
vu∈E(G)

(dup(v) + dup(u))

= 6(12p2 − 12p+ 2) + 12(12p2 − 12p) + (12p− 24)(12p2 − 12p− 1)

+ (9p2 − 15p+ 6)(12p2 − 12p− 2).

Hence,

UPM∗
1 (G) = 108p4 − 288p3 + 450p2 − 258p.

We outline the graphical profiles of the first uphill Zagreb index, second uphill
Zagreb index, forgotten uphill Zagreb index and modified uphill Zagreb index
for the honeycomb network of dimension p in Figure 4.
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Figure 4. Graphical profile of uphill indices for HC(p)

□
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