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CONTINUITY OF THE FRACTIONAL PART FUNCTION AND
DYNAMICS OF CIRCLE
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Abstract. In this paper, we obtain some subsets of real numbers (R)
on which a fractional part function is defined as a real-valued continuous
function. This gives rise to the analysis of the continuous properties of the
fractional part function as a real-valued function. The analysis of fractional
part function is helpful in the study of the dynamics of circle.
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1. Introduction

Dynamics is the study of the motion of the body, or more generally evolution
of a system with time (see, e.g., Brin and Stuck [2], Gadgil [3]). In dynamics
of circle, motion takes place through the points of a circle. The movement of
these points is represented by certain functions defined on the circles which are
called circle maps. The study of dynamics of circle also includes the information
about the continuity of the circle maps. A circle in the plane R× R (R2) is the
boundary of a disc with centre at a point of the plane and some radius. While
studying circles in R × R (R2) we have considered only the unit circle i.e., the
circle with center at (0, 0) and radius 1 which is denoted by S1. A circle map is a
function whose domain and co-domain both are S1. Dynamics of the circle and
dynamics of circle maps have been studied by many researchers, e.g., Gadgil [3],
Sharma and Nagar [4], Zhang [5], and Birkhoff [6].

Every real number can be written as the sum of its integral part and fractional
part. Using Archimedean property of real numbers (for a given a real number
x there exists an integer n such that n ≥ x) and well ordering property of
the natural numbers (for each non-empty subset of natural numbers (N) has the
least element), there exists smallest integer nx for arbitrary real number x (∈ R),
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such that x ≤ nx. This integer nx is recognized as the integral value of x and is
characterized by [x]. Formerly, [x] ≤ x < [x] + 1 proposed that, 0 ≤ x− [x] < 1.
Here x− [x] is called the fractional part of x and is denoted by rx.

Every real number x can be written as, x = [x] + rx with 0 ≤ rx < 1. This
gives a function r : R → [0, 1) taking x to rx. The function r is called the
fractional part function. The fractional part function is helpful in some part of
the study of dynamics of circle maps, in particular and functions in dynamical
systems in general.

Now, we can deduce from the definition of S1 and the definition of fractional
part function that S1 = {(cosx, sinx) : x ∈ [0, 2π)} = {(cos 2πy, sin 2πy) :
y ∈ [0, 1)} = {(cos 2πx, sin 2πx) : x ∈ R} (see, Lal et al. [1]). For x ∈ R,
eix = cosx + i sinx is a periodic function with periodicity 2π. Euler’s identity,
e2πix = cos(2πx) + i sin(2πx), allows us to lift the circle to the real line. There
is a covering mapping π : R → C (the set of complex numbers), defined as
π(x) = e2πix = cos 2πx+i sin 2πx. As a point of R×R, π(x) = (cos 2πx, sin 2πx).
Thus π is also a function from R to R× R.

In particular, π : [0, 1) → S1 is one-one and onto (see Lal et al. [1]). A circle
map is a continuous map f : S1 → S1. For example, for a fixed ω, 0 ≤ ω < 2π,
define fω : S1 → S1 as fω(cosx, sinx) = (cos(x + ω), sin(x + ω)), then fω is
called a circle map. Similarly, for a fixed ω, 0 ≤ ω < 2π, define f∗ω : S1 → S1 as
f∗ω(cosx, sinx) = (cos(x+ 2πω), sin(x+ 2πω)), then f∗ω is called a circle map.

Lift of f is a continuous map F : R → R satisfying the following conditions.

(i) There exists k ∈ Z such that F (x+ 1) = F (x) + k for every x ∈ R.
(ii) π ◦ F = f ◦ π.

Following from the introduction, for a fixed ω with 0 < ω < 2π, we have two
circle maps fω and f∗ω, defined as follows fω(cosx, sinx) = (cos(x+ω), sin(x+ω))
and f∗ω(cosx, sinx) = (cos(x+2πω), sin(x+2πω)). F : R → R, F (x) = x+ω/2π,
and F ∗ : R → R, F ∗(x) = x+ ω are lifts of fω and f∗ω respectively.

For detailed description of the circle maps and its properties, one can go
through Lal et al. [1], Gadgil [3] and references therein.

The continuity of a real-valued function of a real variable is defined using ϵ-δ
definition. Now the question arise ‘what if the domain Y is a proper subset of R’.
If Y is an interval, the same ϵ-δ definition of continuity works excluding at the
end point(s), where we talk of left-hand/right-hand continuity depending upon
the end point. When the domain Y is not necessarily an interval, we need an
exact definition of continuity. An appropriate way for that is to consider subspace
topology. But that definition is very typical to utilize. There is another equivalent
definition of continuity of a real-valued function for a real variable defined on
proper subset Y of R, in terms of ϵ-δ, which is easy to use as compared to
subspace topology (see Munkres [7] and Kelly [8]).

The main focus of our study is to determine such subsets of R on which the
fractional part function is continuous.
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The layout of this article is as follows. In section 2, some basic definitions,
properties and notations are given which help derive the fundamental results.
Section 3 is devoted to the study of functional iteration and orbit of dynamical
systems. In Section 4, some subsets of R on which the fractional part function
is continuous have been derived. In the last section, a conclusion of the work is
given.

2. Preliminaries

In this section, we present some notations and properties of subsets of R which
are used in establishing the continuity of the fractional part function. Following
this, a brief insight on the functional iteration and orbit of the dynamical system
are given which are important for the study of the dynamics of the circle.

Throughout this article, Z denotes the set of integers. For further analysis of
the subsets of R, we present the following notations.

Let Y ⊂ R, 0 < s < 1 and n ∈ Z.
cl(Y ) denotes the closure of Y .
A collection {Yj : j ∈ j} of subsets of R is called separated or pair wise

separated if, for every j, k ∈ j, j ̸= k, cl(Yj) ∩ Yk = ϕ.
For further analysis we present the following notations.
As = ∪{[n, n+ s] : n ∈ Z}.
A0
s = ∪{(n, n+ s) : n ∈ Z}.

Cs = ∪{(n+ s, n+ 1) : n ∈ Z}.
C∗
s = ∪{[n+ s, n+ 1) : n ∈ Z}.

Bs = {x ∈ R : r(x) ≤ s}.
B∗
s = {x ∈ R : r(x) ≥ s}.

Es = {x ∈ R : r(x) = s} = Bs ∩B∗
s .

Ans = [n, n+ s].
V ns = [n, n+ s).

Note. Also, we can define As and Ans , also for s = 0, as A0 turns out to be Z
and An0 = {n}, n ∈ Z.

Let Y ⊂ R and g : Y → R, for x ∈ Y , g : Y → R is said to be continuous at
a point x if g : (Y, τ∗) → R is continuous at x, where τ∗ is the induced topology
of the usual topology of R. g : Y → R is continuous if g : Y → R is continuous
at every point of Y (see Munkers [7] and Kelley [8]).

Remark 2.1. R = ∪{V n1 : n ∈ Z} = ∪{[n, n+ 1) : n ∈ Z}.

Proof. Let x ∈ R. x = [x] + r(x) with 0 ≤ r(x) < 1. Therefore, x ∈ [m,m + 1),
where m = [x]. Thus R = ∪{[n, n+ 1) : n ∈ Z}. □

Remark 2.2. (i) For every s, 0 ≤ s < 1, As = ∪{Ans : n ∈ Z}.
(ii) R = ∪{[n, n+ s) : n ∈ Z, 0 < s < 1}.
(iii) R = ∪{Ans : n ∈ Z, 0 < s < 1}.



1170 B. Lal, A. Miglani, V. Singh

Proof. (i) The proof of this part is directly followed from the definitions of As
and Ans .
(ii) Let x ∈ R. x = [x] + r(x) with 0 ≤ r(x) < 1. Let t be such that 0 ≤ r(x) <
t < 1. Therefore x ∈ [m,m+ t), where m = [x]. Thus R = ∪{[n, n+ s) : n ∈ Z,
0 < s < 1}.
(iii) Using property (ii), R = ∪{[n, n + s) : n ∈ Z, 0 < s < 1} ⊂ ∪{Ans : n ∈ Z,
0 < s < 1}. Therefore, R = ∪{Ans : n ∈ Z, 0 < s < 1}. □

Lemma 2.1. For every s, 0 < s < 1, As = Bs.

Proof. Let x ∈ As. Then, x ∈ [n, n+ s] for some n ∈ Z. Later, n ≤ x ≤ n+ s <
n + 1 implies that n = [x]. Subsequently, x = [x] + r(x) and n + r(x) ≤ n + s
suggest that r(x) ≤ s. Thus, x ∈ Bs. Conversely, let x ∈ Bs. Because [x] ≤ x =
[x] + r(x) ≤ [x] + s signify r(x) ≤ s. Follows, x ∈ [[x], [x] + s]. Thus, x ∈ As. □

Lemma 2.2. For each s, 0 < s < 1, Es = {n+ s : n ∈ Z}.

Proof. Let x ∈ Es. For r(x) = s we have x = [x] + s. Therefore, x ∈ {n + s :
n ∈ Z}. Conversely, let x ∈ {n + s : n ∈ Z}. Then x = m + s for some m ∈ Z.
So x−m = s. Since [x−m] = −m+ [x] and 0 < s < 1, therefore m = [x]. This
implies that r(x) = s. Therefore, x ∈ Es. □

Lemma 2.3. Let H ⊂ R. Let h : H → R. Let x ∈ H. If there exists a δ∗ > 0
such that for y ∈ (x− δ∗, x+ δ∗),

(i) x− y = h(x)− h(y), or
(ii) |h(x)− h(y)| ≤ λ|x− y| for some fixed λ > 0.

Then h is continuous at x.

Proof. For the case (i). Let ϵ > 0. Let δ = min{ϵ, δ∗}. Let |y − x| < δ. Then
y ∈ (x−δ∗, x+δ∗) as δ ≤ δ∗. Therefore by the given condition (i), |h(x)−h(y)| =
|x− y| < δ ≤ ϵ.

For the case (ii). Let ϵ > 0. Let δ = min{ϵ/λ, δ∗}. Let |y − x| < δ. Then
y ∈ (x−δ∗, x+δ∗) as δ ≤ δ∗. Therefore by the given condition (ii), |h(x)−h(y)| ≤
λ|x− y| < δλ ≤ ϵ. □

3. Functional Iteration and Orbit and Dynamical Systems

Dynamics study the pattern in the map under repeated iterations. In the study
of circle maps and their lifts, the study of fractional iteration is considered useful
e.g. Gadgil [3] and Zhang [5].

The framework of functional iteration can be understood from the following
concept. If f : R → R, then we can write, f0(x) = x and f1(x) = f(x). After
applying functional iteration we have f2(x) = (f ◦f)(x) = f(f(x)). Furthermore
f3(x) = (f ◦f2)(x) = f(f2(x)) = f(f(f(x))). In general fn(x) = (f ◦fn−1)(x) =
f(fn−1(x)), for n ≥ 3. Further, fn(x) is called the nth iteration of f for n ≥ 0.
Following are some examples of functional iterations.
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Example 3.1. Let f(x) = x2. Then f2(x) = (f ◦ f)(x) = f(f(x)) = f(x2) =
(x2)2 = x4. f3(x) = (f ◦f2)(x) = f(f2(x)) = f(x4) = (x4)2 = x8. In generalized
form we have, fn(x) = (x2)n. The following figure presents the graph of the three
functions f(x), f2(x), f3(x) for f(x) = x2.

Example 3.2. Let us consider another example of iterated functions.
Let f(x) = x2 + 1. Again f2(x) = (f ◦ f)(x) = f(f(x)) = f(x2 + 1) = (x2 +
1)2 + 1 = x4 + 2x2 + 2. By using iteration of functions f3(x) = (f ◦ f2)(x) =
f(f2(x)) = f(x4 + 2x2 + 2) = (x4 + 2x2 + 2)2 + 1 = x8 + 4x6 + 8x4 + 8x2 + 5.
In this case it is not easy to generalize. Here we can see the comparison of the
iterations of the function f(x).

3.1. Orbit and Dynamical Systems. Let x0 ∈ R. We define the orbit of x0
under f to be the sequence of points x0, x1, x2, x3, . . . , xn, . . . such that xn+1 =
f(xn), for n ≥ 0. That is the orbit of x0 under f is the sequence of iteration
x0, f(x0), f

2(x0), f
3(x0), . . ., f

n(x0), . . . . Here x0 is called the seed of the orbit.
The changing values in an orbit represent a dynamical system after repeated
iterations.
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Example 3.3. Let x = π/3. Consider f(x) = cosx. Then f(π/3) = cos(π/3) =
1/2. Using iteration of the functions, f2(x) = f(f(x)) = f(cosx) = cos(cos(x))
and f2(π/3) = cos(cos(π/3)) = cos(1/2) = 0.8776. Furthermore, f3(x) =
f(f2(x)) = f(cos(cos(x))) = cos(cos(cos(x))) and f3(π/3) = cos(cos(cos(π/3))) =
cos(0.8776) = 0.6390.

The following is the table for cosx for x = 0.5 for first 30 iteration.

Sr. No Values Sr. No Values Sr. No Values
1 0.8776 11 0.7418 21 0.7391
2 0.639 12 0.7372 22 0.739
3 0.8027 13 0.7403 23 0.7391
4 0.6948 14 0.7382 24 0.7391
5 0.7682 15 0.7396 25 0.7391
6 0.7192 16 0.7387 26 0.7391
7 0.7524 17 0.7393 27 0.7391
8 0.7301 18 0.7389 28 0.7391
9 0.7451 19 0.7392 29 0.7391
10 0.735 20 0.739 30 0.7391

As we can follow from the table that the value of the iteration for the function
cosx remains static after 20 iterations.

Example 3.4. Let f(x) = x2 − 1. Use x0 = 1/2. Therefore, f(x0) = f(1/2) =
(1/2)2 − 1 = 1/4− 1 = −3/4. Through iteration process on functions f2(x0) =
(f ◦ f)(x0) = f(f(x0)) = f(−3/4) = (−3/4)2 − 1 = 9/16− 1 = −7/16. Similarly
we have, f3(x0) = (f ◦ f2)(x0) = f(f2(x0)) = f(−7/16) = (−7/16)2 − 1 =
49/256− 1 = −207/256.

Sr. No Values Sr. No Values
1 −0.7500000000 11 −0.9996000000
2 −0.4375000000 12 −0.0007594800
3 −0.8086000000 13 −1.0000000000
4 −0.3462000000 14 −0.0000011536
5 −0.8802000000 15 −1.0000000000
6 −0.2253000000 16 0.0000000000
7 −0.9492000000 17 −1.0000000000
8 −0.0990000000 18 0.0000000000
9 −0.9902000000 19 −1.0000000000
10 −0.0195000000 20 0.0000000000

Also for the value of x = 0.4 and 0.9 the value of the iteration after some
iterations interpolates between −1 and 0.

Let f(x) = x2−1. Using iteration of functions f2(x) = (f ◦f)(x) = f(f(x)) =
f(x2 − 1) = (x2 − 1)2 − 1 = x4 − 2x2. In similar way f3(x) = (f ◦ f)(x) =
f(f2(x)) = f(x4 − 2x2) = (x4 − 2x2)2 − 1 = x8 − 4x6 + 4x4 − 1.
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The following figure shows the comparison for f(x) = x2−1, f2(x) and f3(x).

Remark 3.1. The sequences of iterated images fn(x) when n is an even goes to
zero and when n is an odd the sequence goes to −1, where fn+1(x) = (fn(x))2−1
for large values of n.

Proof. Consider the function f(x) = x2 − 1.
Case (i) Let 0 ≤ x < 1. If x = 0 then f(x) = −1. Again f2(x) = f(f(x)) =
f(−1) = (−1)2 − 1 = 1 − 1 = 0. In similar way f3(x) = f(f2(x)) = f(0) = −1
and so on.
Case (ii) Consider 0 < x < 1. Subcase (i) Let f(x) = x2−1 < 0. With iteration of
functions f2(x) = f(f(x)) = f(x2−1) = (x2−1)2−1 = x4−2x2 = x2(x2−2) =
−x2(2−x2). Again f3(x) = f(f2(x)) = f(−x2(2−x2)) = x4(2−x2)2−1 = y2−1
where y = x2(2−x2). Similarly, f4(x) = f(f3(x)) = f(y2− 1) = (y2− 1)2− 1 =
y4 − 2y2 = −y2(2− y2) = −x4(2− x2)2(2− x4(2− x2)2). Furthermore, f5(x) =
f(f4(x)) = f(−y2(2 − y2)) = (−y2(2 − y2))2 − 1 = y4(2 − y2)2 − 1 = z2 − 1
where z = y2(2− y2). □

Remark 3.2. If f(x) = (x)1/2 then fn(x) = x(1/2)
n and hence fn+1(x) =

x(
1/2)n+1 .

Proof. Let f(x) = (x)1/2. Using iteration process on functions f2(x) = f(f(x)) =

f((x)1/2) = x(1/2)
2 . Then fn+1(x) = f(fn(x)) = (fn(x))1/2. We claim that

fn(x) = x(1/2)
n . By induction method for n = 1, f(x) = (x)1/2. Let us suppose

the result is true for n, i.e. fn(x) = x(1/2)
n . Furthermore fn+1(x) = f(fn(x)) =

(x(1/2)
n)1/2 = x(1/2)

n+1 . □

Remark 3.3. If x < 1 then, x(1/2)n < 1.

Proof. For n = 1, if 0 < x < 1 then x1/2 < 1. Suppose the result is true for n,
i.e. x(1/2)n < 1. Now x(1/2)

n+1

= (x(1/2)
n

)1/2 < 1. This proves for n+ 1. □
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Remark 3.4. If x > 1 then, x1/2 < x.

Proof. If t, y > 0. If t2 < y2 if and only if t < y. If t < y if and only if
t1/2 < y1/2. Whenever 1 < x at that instant x < x2 i.e. (x1/2)2 < x2. It follows
that x1/2 < x. □
Remark 3.5. If 1 < x then, x(1/2)n ≤ x.

Proof. By induction if n = 1, x1/2 < x. Suppose that it is true for n i.e. x(1/2)n ≤
x. Now x(1/2)

n+1

= (x(1/2)
n)1/2 < x1/2 < x. This proves for n+ 1. □

Remark 3.6. We claim that 1 < x(1/2)
n .

Proof. By induction if n = 1, 1 < x1/2. Suppose it is true for n i.e. 1 < x(1/2)
n .

Now 1 < (x(1/2)
n

)1/2 = x(1/2)
n+1 .This proves for n+ 1. □

Remark 3.7. If 0 < x < 1, then limx(1/2)
n

= 1.

Proof. Let t = limx(1/2)
n exists. Therefore, t = xlim(1/2)n = x0 = 1. When 0 <

x < 1. Let y = 1/x, then y(1/2)n = 1/x(1/2)
n . If y > 1. Therefore, lim y(1/2)

n

= 1.
Therefore, 1 = 1/ limx(1/2)

n . Hence, limx(1/2)
n

= 1.
The following is a table for f(x) = x(1/2), x = 0.1 up to 30 iterations in which

one can see that up to 23 iteration approaches to 1 and in the 24 and onward
iteration becomes exactly 1.

Sr. No Values Sr. No Values Sr. No Values
1 0.3162000000 11 0.7499000000 21 0.9997000000
2 0.5623000000 12 0.8660000000 22 0.9999000000
3 0.7499000000 13 0.9306000000 23 0.9999000000
4 0.8660000000 14 0.9647000000 24 1.0000000000
5 0.9306000000 15 0.9822000000 25 1.0000000000
6 0.9647000000 16 0.9910000000 26 1.0000000000
7 0.9822000000 17 0.9955000000 27 1.0000000000
8 0.9910000000 18 0.9978000000 28 1.0000000000
9 0.3162000000 19 0.9989000000 29 1.0000000000
10 0.5623000000 20 0.9994000000 30 1.0000000000

4. Results

In this section, we present the fundamental results in which the subsets of R
are derived where the fractional part function is continuous.

Lemma 4.1. Let {Yj : j ∈ J} be a collection of subsets of R such that ∪{Yj :
j ∈ J} is closed. Then {Yj : j ∈ J} are pair wise separated iff {Yj : j ∈ J} are
pair wise disjoint and each Yj is closed.

Proof. If {Yj : j ∈ J} are pair wise disjoint and each Yj is closed then clearly
{Yj : j ∈ J} are pair wise separated. Now suppose that {Yj : j ∈ J} are
pair wise separated. Let k ∈ j. Let x ∈ cl(Yk). Suppose x /∈ Yk. For j ∈ J ,
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j ̸= k, since cl(Yk) ∩ Yj = ϕ, x /∈ Yj . Thus x /∈ ∪{Yj : j ∈ J}. Therefore
x ∈ B = R − ∪{Yj : j ∈ J}. Since B is open and x ∈ cl(Yk), B ∩ Yk ̸= ϕ. But
B ∩ Yk = ϕ as B ⊂ R− Yk. □

Corollary 4.2. Let {Bj : j ∈ J} and {Yj : j ∈ J} be such that R − ∪{Yj : j ∈
J} = ∪{Bj : j ∈ J}. If ∪{Bj : j ∈ J} is open then {Yj : j ∈ J} are pair wise
disjoint and each Yj is closed iff {Yj : j ∈ J} are pair wise separated.

Proof. By the given condition ∪{Yj : j ∈ J} is closed. Therefore the result
follows by Lemma 4.1.

Lemma 4.3. Let R = ∪{Yj : j ∈ J} be such that Yj ∩ Yk = ϕ for every
j, k ∈ j, j ̸= k. If for each j ∈ J , Yj = Hj ∪ Kj with Hj ∩ Kj = ϕ, then
R− ∪{Hj : j ∈ J} = ∪{Kj : j ∈ J}.

Proof. Let j, k ∈ J , k ̸= j. Since Yj∩Yk = ϕ, Yj∩Hk = ϕ. Thus Yj ⊂ R−Hk. So
Yj −Hk = Yj ∩ (R−Hk) = Yj . This implies that ∩{Yj −Hk : k ∈ j, k ̸= j} = Yj .
Therefore, ∩{Yj −Hk : k ∈ j} = Yj −Hj . Now R−∪{Hj : j ∈ J} = (∪{Yj : j ∈
J})− (∪{Hk : k ∈ J}) = ∪{(Yj − (∪{Hk : k ∈ J}) : j ∈ J} = ∪{∩(Yj −Hk : k ∈
J) : j ∈ J} = ∪{Yj −Hj : j ∈ J} = ∪{Kj : j ∈ J}, as Yj −Hj = Kj . □

Lemma 4.4. For every s, 0 < s < 1, R−As = Cs = ∪{(n+ s, n+ 1);n ∈ Z}.

Proof. By Remark 2.1, R = ∪{[n, n + 1) : n ∈ Z}. Let j = Z. Let, for n ∈ Z,
Yn = [n, n+1). Then Yn ∩ Yk = ϕ for every n, k ∈ Z, n ̸= k. Let Hn = [n, n+ s]
and Kn = (n + s, n + 1). Then Yn = Hn ∪Kn and Hn ∩Kn = ϕ. Therefore by
Lemma 4.3, R−As = Cs = ∪{(n+ s, n+ 1) : n ∈ Z}. □

Remark 4.1. For every s, 0 < s < 1, B∗
s = ∪{[n+ s, n+ 1) : n ∈ Z}.

Proof. B∗
s = {x : r(x) > s} ∪ {x : r(x) = s}. Therefore, by definition of Bs,

B∗
s = (R − Bs) ∪ Es = (R − As) ∪ Es as Bs = As by Lemma 2.1. Since, by

Lemma 4.4, R− As = Cs = ∪{(n+ s, n+ 1);n ∈ Z} and Es = {n+ s : n ∈ Z},
B∗
s = ∪{[n+ s, n+ 1);n ∈ Z}. □

Remark 4.2. Let 0 < s < 1. For every n ∈ Z, n is a limit point of B∗
s , so B∗

s

is not closed.

Proof. By Remark 4.1, B∗
s = ∪{[n + s, n + 1) : n ∈ Z}. As n ∈ Z if and only if

n − 1 ∈ Z at this point B∗
s = ∪{[n − 1 + s, n) : n ∈ Z}. For n ∈ Z, n is a limit

point of B∗
s , so B∗

s is not closed. □

Remark 4.3. R−A0
s = C∗

s = ∪{[n+s, n+1);n ∈ Z}, where A0
s = ∪{(n, n+s) :

n ∈ Z}.

Proof. R = ∪{[n, n + 1) : n ∈ Z}. Let J = Z. Let for n ∈ Z, Yn = [n, n + 1).
Then Yn ∩ Yk = ϕ for every n, k ∈ Z, n ̸= k. Let Hn = (n, n + s) and Kn =
[n+ s, n+1). Then Yn = Hn ∪Kn and Hn ∩Kn = ϕ. Therefore, by Lemma 4.4,
R−A0

s = C∗
s = ∪{[n+ s, n+ 1);n ∈ Z}. □
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Remark 4.4. The Lemma 4.4 can also be proved using the function r i.e. using
Lemma 2.1. We give the proof below.

Lemma 4.5. (i) R−As = Cs = ∪{(n+ s, n+ 1);n ∈ Z}. (ii) As is closed.

Proof. (i) Since by Lemma 2.1, As = Bs, we prove that R−Bs = ∪{(n+s, n+1) :
n ∈ Z}. As R − Bs = {x ∈ R; r(x) > s}. Let x ∈ R − Bs. Therefore, r(x) > s.
Already, x = [x] + r(x). We claim x ∈ ([x] + s, [x] + 1). As r(x) > s therefore
[x] + r(x) > [x] + s. Again r(x) < 1 then we have [x] + r(x) < [x] + 1. Therefore,
[x] + s < x < [x] + 1. Hence, x ∈ ([x] + s, [x] + 1). For the converse, suppose
that x ∈ (n + s, n + 1) for some n ∈ Z. Since n + s < x < n + 1, n = [x]. So
r(x) = x− [x] > s. Therefore, x ∈ R−Bs.
(ii) Since ∪{(n+ s, n+ 1);n ∈ Z} is open, by (i), R−As is open. Therefore, As
is closed. □

The following is the direct proof that As is closed. We need the following
remark for that.

Remark 4.5. Let a, x, b ∈ R such that a < x < b. Take δ = min{x − a, b − x}
then a ≤ x− δ and x+ δ ≤ b. Therefore, (x− δ, x+ δ) ⊂ (a, b).

Proof. As δ = min{x−a, b−x} therefore, δ ≤ x−a and δ ≤ b−x. Consequently,
a ≤ x− δ and x+ δ ≤ b. Hence, (x− δ, x+ δ) ⊂ (a, b).

Proof of As is closed. Suppose x /∈ As. This suggest that, x /∈ [[x], [x] + s].
Accordingly, r(x) > s as x = [x]+r(x). As follows, [x]+s < x < [x]+1. Let δ =
min{r(x)−s, 1−r(x)}. Because x−([x]+s) = r(x)−s, and [x]+1−x = 1−r(x),
then by Remark 4.5 we have (x − δ, x + δ) ⊂ ([x] + s, [x] + 1). Consequently,
we have, (x − δ, x + δ) ∩ [[x], [x] + s] = ϕ. Let n ∈ Z and n ̸= [x]. Then either
n < [x] or [x]+1 ≤ n. Suppose n < [x]. Through Remark 4.5, s ≤ r(x)−δ. Hence,
n+s < x−δ. Now consider [x]+1 ≤ n. Applying Remark 4.5, x+δ ≤ [x]+1 ≤ n.
Along these lines we have (x − δ, x + δ) ∩ [n, n + s] = ϕ for every n ∈ Z. Thus
(x − δ, x + δ) ∩ As = ϕ. Therefore x is not a limit point of As. Hence As is
closed. □

As mentioned in the introduction, we need to have a working definition of the
continuity of a real-valued function of a real variable is defined using ϵ-δ, when
the domain Y of the function is a proper subset of R. If Y is an interval, the
same ϵ -δ definition of continuity works except at the end point(s). When the
domain Y is not necessarily an interval, we have the following definition which
works even when Y is an interval. But first we have the theoretical definition.
Then we have an equivalent definition of continuity of a real-valued function of
a real variable in terms of ϵ-δ, which we use later.

Remark 4.6. Let Y ⊂ R and g : Y → R. Suppose x ∈ Y . (i) If g is continuous at
x if and only if for given ϵ > 0, there exists δ > 0 such that for y ∈ (x−δ, x+δ)∩Y
then |g(x)−g(y)| < ϵ. (ii) If there exists δ > 0 such that for y ∈ (x−δ, x+δ)∩Y
and |g(x)− g(y)| ≤ |x− y|, then g is continuous at x.
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Proof. (i) It follows as (x− δ, x+ δ) ∩ Y is open in the induced topology on Y .
(ii) For given ϵ > 0, if we take δ∗ = min{ϵ, δ}, then g is continuous at x. □

Remark 4.7. Let H ⊂ Y ⊂ R. Let g : Y → R. Let x ∈ H. (i) If g : H → R is
not continuous at x, then g : Y → R is not continuous at x. (ii) The converse
of (i) is not true. That is, if g : Y → R is not continuous at x, then g : H → R
may be continuous at x.

Proof. (i) g : H → R is not continuous at x, so by Remark 4.6, there exists
some ϵ > 0 such that whatever δ > 0 we take there exists y ∈ (x− δ, x+ δ) ∩H
such that |g(x) − g(y)| ≥ ϵ. Since H ⊂ Y , y ∈ (x − δ, x + δ) ∩ Y . Therefore, in
view of Remark 4.6, g : Y → R is not at x. (ii) Take H = Z and Y = R. Every
g : Z → R is continuous. But every g : R → R is not continuous. □

Remark 4.8. Let x, y ∈ R. If [x] = [y] then x − y = r(x) − r(y). Prove that
r(x) < r(y) if and only if x < y.

Proof. As of now x = [x]+r(x) and y = [y]+r(y). Accordingly, x−y = r(x)−r(y)
as [x] = [y]. Immediately it follows that r(x) < r(y) if and only if x < y. □

Proposition 4.6. Let As = ∪{[n, n+ s];n ∈ Z}. r : As → R is continuous.

Proof. Let x ∈ As. First we find δ > 0 such that for y ∈ (x− δ, x+ δ) ∩As and
[y] = [x]. Suppose x ∈ [m,m+s] for somem ∈ Z. Case (i) Let x ∈ (m,m+s) and
δ = min{x−m,m+s−x}. Applying Remark 4.5 we get (x−δ, x+δ) ⊂ (m,m+s).
Let y ∈ (x− δ, x+ δ)∩As. Then we have y ∈ (m,m+ s). Consequently [y] = [x]
as s < 1. Case (ii) Suppose x = m+ s. Take δ = 1/2(min{s, (1− s)}). Through
Remark 4.5 we obtain (x−δ, x+δ) ⊂ (m,m+1). Let y ∈ (x−δ, x+δ)∩As. Then we
have y ∈ (m,m+1). Hence [y] = m = [x] as 0 < s < 1. Case (iii) Let x = m. Take
δ = 1/2(min{s, (1−s)}). Using Remark 4.5 we get (x−δ, x+δ) ⊂ (m−1,m+s).
Let y ∈ (x−δ, x+δ)∩As. Then y ∈ [m,m+s) as (m−1,m+s)∩As ⊂ [m,m+s).
Hence, [y] = [x]. Thus in every case, for y ∈ (x−δ, x+δ)∩As we obtain [y] = [x].
By Remark 4.8, x − y = r(x) − r(y). Now, by Remark 4.6(ii), r is continuous
at x. □

Remark 4.9. By Proposition 4.6, for every s with 0 < s < 1, r is continuous
on As. The collection {As : s ∈ R, 0 < s < 1} is a totally ordered subset of the
p.o. set (R,⊂) because for s, t ∈ R, 0 < s, t < 1, As ⊂ At, or At ⊂ As depending
upon s ≤ t, or t ≤ s. Let x ∈ R. x = [x] + r(x). Since 0 ≤ r(x) < 1, x ∈ At for
every t such that r(x) < t. Therefore ∪{As : s ∈ R, 0 < s < 1} = R. By definition
A0
s = ∪{(n, n+s) : n ∈ Z}. It can be seen that ∪{A0

s : s ∈ R, 0 < s < 1} = R−Z.

Remark 4.10. We have seen above that, for s = 0, As = Z, i.e. A0 = Z. It can
be seen (below) that r is continuous also on A0.

Remark 4.11. (i) r is continuous on R− Z. (ii) r is continuous on Z. (iii) r is
continuous on H, if H ⊂ R− Z or Z.
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Proof. (i) Let x ∈ R− Z. Since [x] < x < [x] + 1, by Remark 4.5 there exists a
δ > 0 such that (x − δ, x + δ) ⊂ ([x], [x] + 1). Therefore, for y ∈ (x − δ, x + δ),
[y] = [x]. By Remark 4.8, x − y = r(x) − r(y). Therefore r is continuous at
x. Therefore r is continuous on R − Z. (ii) Let m ∈ Z. Let ϵ > 0. For δ < 1,
(m−δ,m+δ)∩Z = {m}, therefore r(y)−r(m) = 0 for every y ∈ (m−δ,m+δ)∩Z.
(iii) Restriction of a continuous function is continuous. □

5. Conclusion

In this article, we have discussed the circle maps, functional iterations, orbit
and dynamical systems and their relations following some examples. Further,
we have demonstrated the relationship between circle maps and fractional part
functions. Following this, some particular subsets of R have been presented in
which the fractional part function is continuous. The work in this paper is new
from the point of analysis.
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