DOI QR코드

DOI QR Code

LEONARD PAIRS GENERATED FROM Uq(sl2)

  • 투고 : 2022.02.02
  • 심사 : 2022.07.29
  • 발행 : 2022.09.30

초록

Consider the quantum algebra Uq(sl2) over field 𝓕 (char(𝓕) = 0) with equitable generators x±1, y and z, where q is fixed nonzero, not root of unity scalar in 𝓕. Let V denote a finite dimensional irreducible module for this algebra. Let Λ ∈ End(V), and let {A1, A2, A3} = {x, y, z}. First we show that if Λ, A1 is a Leonard pair, then this Leonard pair have four types, and we show that for each type there exists a Leonard pair Λ, A1 in which Λ is a linear combination of 1, A2, A3, A2A3. Moreover, we use Λ to construct 𝚼 ∈ Uq(sl2) such that 𝚼, A-11 is a Leonard pair, and show that 𝚼 = I + A1Φ + A1ΨA1 where Φ and Ψ are linear combination of 1, A2, A3.

키워드

과제정보

This work was supported by the research grant of the University of Jordan.

참고문헌

  1. H. Alnajjar, Leonard pairs associated with equitable generators of the quantum algebra Uq(sl2), Linear and Multilinear Algebra 59 (2011), 1127-1142. https://doi.org/10.1080/03081087.2011.565757
  2. H. Alnajjar, A linear map that acts as a Leonard pair with each of the generators of U(sl2), International Journal of Mathematics and Mathematical Science 2020 (2020).
  3. H. Alnajjar and B. Curtin, Leonard pairs from the equitable basis of sl2, ELA 20 (2010), 490-505. http://www.math.technion.ac.il/iic/ela/20.html
  4. H. Alnajjar and B. Curtin, Linear maps that act tridiagonally with respect to eigenbases of the equitable generators of Uq(sl2), Mathematics 2020 (2020).
  5. B. Hartwig, Three mutually adjacent Leonard pairs, Linear Algebra Appl. 408 (2005), 19-39. arXiv:math. AC/0508415 https://doi.org/10.1016/j.laa.2005.04.005
  6. T. Ito, P. Terwilliger and C.-W. Weng, The quantum algebra Uq(sl2) and its equitable presentation, Journal of Algebra 298 (2006), 284-301. https://doi.org/10.1016/j.jalgebra.2005.07.038
  7. C. Kassel, Quantum Groups, Springer-Verlag, New York, 1995.
  8. Man Sang, Suogang Gao, Bo Hou, Leonard pairs and quantum algebra Uq(sl2), Linear Algebra Appl. 510 (2016), 346-360. https://doi.org/10.1016/j.laa.2016.08.034
  9. K. Nomura, Leonard pairs having LB-TD form, Linear Algebra Appl. 445 (2014), 1-21. https://doi.org/10.1016/j.laa.2014.04.025
  10. P. Terwilliger, The subconstituent algebra of an association scheme. III, J. Algebraic combin. 2 (1993), 177-210. https://doi.org/10.1023/A:1022415825656
  11. P. Terwilliger, Finite dimensional Uq(sl2)-modules from the equitable point of view, Linear Algebra Appl. 439 (2013), 358-400. https://doi.org/10.1016/j.laa.2013.03.022
  12. P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Linear Algebra Appl. 330 (2001), 149-203. https://doi.org/10.1016/S0024-3795(01)00242-7
  13. P. Terwilliger, Leonard pairs from 24 points of view, Rocky Mountain J. Math. 32 (2002), 827-888. https://doi.org/10.1216/rmjm/1030539699
  14. P. Terwilliger, Introduction to Leonard pairs. OPSFA Rome 2001, J. Comput. Appl. Math. 153 (2003), 463-475. https://doi.org/10.1016/S0377-0427(02)00600-3
  15. P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Linear Algebra Appl. 330 (2001), 149-203. https://doi.org/10.1016/S0024-3795(01)00242-7
  16. P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other, J. Algebra 291 (2005), 1-45. https://doi.org/10.1016/j.jalgebra.2005.05.033
  17. P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Des. Codes Cryptogr. 34 (2005), 307-332. https://doi.org/10.1007/s10623-004-4862-7