DOI QR코드

DOI QR Code

The effect of different earthquake ground motion levels on the performance of steel structures in settlements with different seismic hazards

  • Received : 2021.09.06
  • Accepted : 2022.08.27
  • Published : 2022.10.10

Abstract

The updated Turkish Building Earthquake Code has been significantly renovated and expanded compared to previous seismic design codes. The use of earthquake ground motion levels with different probabilities of exceedance is one of the major advances in structural mechanics with the current code. This study aims to investigate the earthquake performance of steel structure in settlements with different seismic hazards for various earthquake ground motion levels. It is focused on earthquake and structural parameters for four different ground motion levels with different probabilities of exceedance calculated according to the location of the structure by the updated Turkish Hazard Map. For this purpose, each of the seven different geographical regions of Turkey which has the same seismic zone in the previous earthquake hazard map has been considered. Earthquake parameters, horizontal design elastic spectra obtained and comparisons were made for all different ground motion levels for the seven different locations, respectively. Structural analyzes for a sample steel structure were carried out using pushover analysis by using the obtained design spectra. It has been determined that the different ground motion levels significantly affect the expected target displacements of the structure for performance criteria. It is noted that the different locations of the same earthquake zone in the previous code with the same earthquake-building parameters show significant variations due to the micro zoning properties of the updated seismic design code. In addition, the main innovations of the updated code were discussed.

Keywords

References

  1. Adar, K., Buyuksarac, A., Isik, E. and Ulu, A.E. (2021), "Comparison of 2007 and 2018 seismic codes in the scope of structural analysis", Avrupa Bilim ve Teknoloji Dergisi, 25, 306-317. https://doi.org/10.31590/ejosat.906347.
  2. Ademovic, N., Hrasnica, M. and Oliveira, D.V. (2013), "Pushover analysis and failure pattern of a typical masonry residential building in Bosnia and Herzegovina", Eng. Struct., 50, 13-29. https://doi.org/10.1016/j.engstruct.2012.11.031.
  3. AFAD (2018), Turkish Earthquake Hazard, Map, Ankara, Turkey.
  4. AFAD (2020), Interactive Earthquake Map, https://tdth.afad.gov.tr.
  5. Akkar, S., Kale, O., Yakut, A. and Ceken, U. (2018), "Groundmotion characterization for the probabilistic seismic hazard assessment in Turkey", Bull. Earthq. Eng., 16(8), 3439-3463. http://doi.org/10.1007/s10518-017-0101-2.
  6. Akkar, S., Sandikkaya, M.A. and Bommer, J.J. (2014), "Empirical ground-motion models for point-and extended-source crustal earthquake scenarios in Europe and the Middle East", Bull. Earthq. Eng., 12(1), 359-387. https://doi.org/10.1007/s10518-013-9461-4.
  7. Akkose, M., Sunca, F. and Turkay, A. (2018), "Pushover analysis of prefabricated structures with various partially fixity rates", Earthq. Struct., 14(1), 21-32. https://doi.org/10.12989/eas.2018.14.1.021.
  8. Aksoylu, C. and Arslan, M.H. (2021), "Comparative investigation of different earthquake load calculation methods for reinforced concrete buildings in the 2007 and 2019 Codes'', Int. J. Eng. Res. Dev., 13(2), 359-374. http://doi.org/10.29137/umagd.844186.
  9. Aksoylu, C., Mobark, A., Hakan Arslan, M. and Hakki, E.I. (2020), "A comparative study on ASCE 7-16, TBEC-2018 and TEC-2007 for reinforced concrete buildings'', Revista de la Construccion, 19(2), 282-305. http://dx.doi.org/10.7764/rdlc.19.2.282.
  10. Alyamac, K.E. and Erdogan, A.S. (2005), "Gecmisten gunumuze afet yonetmelikleri ve uygulamada karsilasilan tasarim hatalari", Fourth National Conference on Earthquake Engineering, Kocaeli, Turkey.
  11. Antoniou, S. and Pinho, R. (2004), "Advantages and limitations of adaptive and non-adaptive force-based pushover procedures", J. Earthq. Eng., 8, 497-522. https://doi.org/10.1142/S1363246904001511.
  12. ASCE 7-16 (2016), American Society of Civil Engineers, ASCE 7-16 Minimum Design Loads for Buildings and other Structures, American Society of Civil Engineers, USA.
  13. ATC-40 (1996), Applied Technology Council, Seismic Evaluation and Retrofit of Concrete Buildings, Vol 1, Washington, DC. USA.
  14. Avcil, F., Isik, E., Bilgin, H. and Baytan, H.O. (2022), "TBDY2018'de verilen tasarim spektrumlarinin anitsal yigma yapi sismik davranisina etkisi", Adiyaman universitesi Muhendislik Bilimleri Dergisi, 9(16), 165-177. https://doi.org/10.54365/adyumbd.1051120.
  15. Avsar, O. (2020), "Examination of the code requirements for the inter-story drift ratio limits", J. Struct. Eng., 3(1), 49-60. https://doi.org/10.31462/jseam.2020.01049060.
  16. Basaran, V. (2018), "Evaluation of seismic loads for Afyonkarahisar according to Turkish Seismic Code (TSC2019)'', AKU J. Sci. Eng., 18, 1028-1035. https://doi.org/10.5578/fmbd.67739.
  17. Basaran, V. and Hicyilmaz, M. (2020), "Investigation of different earthquake ground motion level effects in reinforced concrete frames", J. Innov. Civil Eng. Techn., 2(1), 27-41.
  18. Balun, B., Nemutlu, O.F., Benli, A. and Sari, A. (2020), "Estimation of probabilistic hazard for Bingol province, Turkey", Earthq. Struct., 18(2), 223-231. https://doi.org/10.12989/eas.2020.18.2.223.
  19. Bilgin, H. and Hysenlliu, M. (2020), "Comparison of near and farfault ground motion effects on low and mid-rise masonry buildings". J. Build. Eng., 30, 101248. https://doi.org/10.1016/j.jobe.2020.101248.
  20. Bilgin, H. and Huta, E. (2018), "Earthquake performance assessment of low and mid-rise buildings: Emphasis on URM buildings in Albania", Earthq. Struct., 14(6), 599-614. https://doi.org/10.12989/eas.2018.14.6.599.
  21. Bozer, A. (2020), "Tasarim spektral ivme katsayilarinin DBYBHY 2007 ve TBDY 2018 yonetmeliklerine gore karsilastirmasi'', Dicle universitesi Muhendislik Fakultesi Muhendislik Dergisi, 11(1), 393-404. https://doi.org/10.24012/dumf.559965.
  22. Buyuksarac, A., Isik, E. and Harirchian, E. (2021), "A case study for determination of seismic risk priorities in Van (Eastern Turkey)", Earthq. Struct., 20(4), 445-455. https://doi.org/10.12989/eas.2021.20.4.445.
  23. Crowley, H., Despotaki, V., Silva, V., Dabbeek, J., Romao, X., Pereira, N., ... & Hancilar, U. (2021), "Model of seismic design lateral force levels for the existing reinforced concrete European building stock", Bull. Earthq. Eng., 19(7), 2839-2865. https://doi.org/10.1007/s10518-021-01083-3.
  24. Capa, Y.U., Ozuygur, A.R. and Celep, Z. (2021), "A study on earthquake performances of reinforced concrete buildings with various number of stories'', J. Struct. Eng. Appl. Mech., 4(2), 83-98. https://doi.org/10.31462/jseam.2021.04083098.
  25. Cavdar, O. and Bayraktar, A. (2014), "Pushover and nonlinear time history analysis evaluation of a RC building collapsed during the Van (Turkey) earthquake on October 23, 2011'', Nat. Hazard., 70(1), 657-673. https://doi.org/10.1007/s11069-013-0835-3.
  26. Cayci, B.T. and Eldemir, O. (2021), "TBDY-2018 ve DBYBHY2007 deprem yonetmelikleri performans seviyelerinin karsilastirilmasi", Muhendislik Bilimleri ve Tasarim Dergisi, 9(4), 1386-1397. https://doi.org/10.21923/jesd.876935.
  27. Ceken, U., Dalyan, I., Kilic, N., Koksal, T.S. and Tekin, B.M. (2017), "Turkiye deprem tehlike haritalari interaktif web uygulamasi", Proceedings of the International Earthquake Engineering and Seismology Conference, Bucharest, Romania.
  28. Elnashai, A.S. (2001), "Advanced inelastic static (pushover) analysis for earthquake applications", Struct. Eng. Mech., 12(1), 51-70. https://doi.org/10.12989/sem.2001.12.1.051.
  29. Eurocode (2005), Eurocode-8: Design of Structures for Earthquake Resistance-Part 3: Assessment and Retrofitting of Buildings, EN1998, 3, European Committee for Standardization, Bruxelles, Belgium.
  30. Fema-356 (2000), Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, DC, USA.
  31. Goel, R.K. (2011), "Variability and accuracy of target displacement from nonlinear static procedures", Int. Scholar. Res. Notice., 2011, 582426. https://doi.org/10.5402/2011/582426.
  32. Guler, K. and Celep, Z. (2020), "On the general requirements for design of earthquake resistant buildings in the Turkish Building Seismic code of 2018", IOP Conf. Ser.: Mater. Sci. Eng., 737(1), 012015. https://doi.org/10.1088/1757-899X/737/1/012015
  33. Gullu, A. and Karamese, G. (2021), "Effect of building importance factor on seismic performance of rc frame type shopping malls subjected to pulse-like records", Struct., 34, 158-168. https://doi.org/10.1016/j.istruc.2021.07.075.
  34. Hadzima-Nyarko, M. and Kalman Sipos, T. (2017), "Insights from existing earthquake loss assessment research in Croatia", Earthq. Struct., 13(4), 365-375. https://doi.org/10.12989/eas.2017.13.4.401.
  35. Hasan, R., Xu, L. and Grierson, D.E. (2002), "Push-over analysis for performance-based seismic design'', Comput. Struct., 80(31), 2483-2493. https://doi.org/10.1016/S0045-7949(02)00212-2.
  36. Hysenlliu, M., Bilgin, H., Bidaj, A. and Leti, M. (2020), "Structural performance of URM school buildings during the 2019 Albania earthquakes", Challenge, 6(4), 215-231. https://doi.org/10.20528/cjsmec.2020.04.006.
  37. Isik, E., Ekinci, Y.L., Sayil, N., Buyuksarac, A. and Aydin, M.C. (2021), "Time-dependent model for earthquake occurrence and effects of design spectra on structural performance: a case study from the North Anatolian Fault Zone, Turkey", Turkish J. Earth Sci., 30(2), 215-234. https://doi.org/10.3906/yer-2004-20.
  38. Isik, E., Aydin, M.C. and Buyuksarac, A. (2020), "24 January 2020 Sivrice (Elazig) earthquake damages and determination of earthquake parameters in the region", Earthq. Struct., 19(2), 145-156. https://doi.org/10.12989/eas.2020.19.2.145.
  39. Isik, E., Harirchian, E., Bilgin, H. and Jadhav, K. (2021a), "The effect of material strength and discontinuity in RC structures according to different site-specific design spectra", Res. Eng. Struct. Mater., 7(3), 413-430. http://dx.doi.org/10.17515/resm2021.273st0303.
  40. Isik, E., Buyuksarac, A., Ekinci, Y.L., Aydin, M.C. and Harirchian, E. (2020), "The effect of site-specific design spectrum on earthquake-building parameters: A case study from the Marmara region (NW Turkey)", Appl. Sci., 10(20), 7247. https://doi.org/10.3390/app10207247.
  41. Isik, E. (2021), "A comparative study on the structural performance of an RC building based on updated seismic design codes: case of Turkey", Challenge J. Struct. Mech., 7(3), 123-134. https://doi.org/10.20528/cjsmec.2021.03.002.
  42. Isik, E. (2022), "Comparative investigation of seismic and structural parameters of earthquakes (M≥6) after 1900 in Turkey", Arab. J. Geosci., 15, 971. https://doi.org/10.1007/s12517-022-10255-7.
  43. Isik, E. and Demirkran, E. (2020), "The effect of different earthquake ground motion level on performance of reinforcedconcrete structures", Bitlis Eren U. J. Sci. Techn., 11(2), 29-35. https://doi.org/10.17678/beuscitech.952812.
  44. Kaplan, H., Bilgin, H., Yilmaz, S., Binici, H. and Oztas, A. (2010), "Structural damages of L'Aquila (Italy) earthquake". Nat. Hazard. Earth Syst. Sci., 10(3), 499-507. https://doi.org/10.5194/nhess-10-499-2010.
  45. Kamal, M. and Inel, M. (2021), "Correlation between ground motion parameters and displacement demands of mid-rise RC buildings on soft soils considering soil-structure-interaction", Build., 11(3), 125. https://doi.org/10.3390/buildings11030125.
  46. Karasin, I.B., Isik, E., Demirci, A. andAydin, M.C. (2020), "Cografi konuma ozel tasarim spektrumlarinin betonarme yapi performansina etkisi'', Dicle universitesi Muhendislik Fakultesi Muhendislik Dergisi, 11(3), 1319-1330. https://doi.org/10.24012/dumf.682377.
  47. Kemaloglu, M. (2015), "Historical and legal development of disaster management in Turkey", Akademik Bakis Dergisi, 5, 126-147.
  48. Keskin, E. and Bozdogan, K.B. (2018), "2007 ve 2018 deprem yonetmeliklerinin Kirklareli Ili ozelinde degerlendirilmesi", Kirklareli universitesi Muhendislik ve Fen Bilimleri Dergisi, 4(1), 74-90.
  49. Kocak, I. (2007), ''Secilen bir kamu binasinin dogrusal otesi davranisinda beton dayanimi ve etriye araliginin etkisi'', Yuksek Lisans Tezi, Pamukkale universitesi, Denizli, Turkiye.
  50. Kocer, M., Nakipoglu, A., Ozturk, B., Al-hagri, M.G. and Arslan, M.H. (2018), "Deprem kuvvetine esas spektral ivme degerlerinin TBDY 2018 ve TDY 2007'ye gore karsilastirilmasi'', Selcuk-Teknik Dergisi, 17(2), 43-58.
  51. Krawinkler, H. and Seneviratna, G.D.P.K. (1998), "Pros and cons of a pushover analysis of seismic performance evaluation", Eng. Struct., 20, 452-464. https://doi.org/10.1016/S0141-0296(97)00092-8.
  52. Kusu, A. and Beyen, K. (2019), "Ayni kosullar altinda tasarlanan 12 katli celik ve betonarme bir yapinin TBDY 2018 esaslarina gore karsilastirilmasi", Kocaeli universitesi Fen Bilimleri Dergisi, 2(2), 64-73.
  53. Latifi, R. and Hadzima-Nyarko, M. (2021), "A comparison of structural analyses procedures for earthquake-resistant design of buildings", Earthq. Struct., 20(5), 531-542. http://dx.doi.org/10.12989/eas.2021.20.5.531.
  54. Lawson, R.S., Vance, V. and Krawinkler, H. (1994), "Nonlinear static push-over analysis-why, when and how?", Proceedings of 5th US Conference on Earthquake Engineering, 1, Chicago, IL.
  55. Naughton, D.T., Tsavdaridis, K.D., Maraveas, C. and Nicolaou, A. (2017), "Pushover analysis of steel seismic resistant Frames with reduced web section and reduced beam section connections'', Front. Built Environ., 3, 59. https://doi.org/10.3389/fbuil.2017.00059.
  56. Nemutlu, O.F., Balun, B., Benli, A. and Sari, A. (2020), "Bingol ve Elazig illeri ozelinde 2007 ve 2018 Turk deprem yonetmeliklerine gore ivme spektrumlarinin degisiminin incelenmesi", Dicle universitesi Muhendislik Fakultesi Muhendislik Dergisi, 11(3), 1341-1356. https://doi.org/10.24012/dumf.703138.
  57. Onat, O. and Yon, B. (2021), "A novel inter-story drift limit proposal for TBEC2018 and fragility prognosis with TSC2007", J. Struct. Eng., 4(2), 068-082. https://doi.org/10.31462/jseam.2021.04068082.
  58. Onat, O., Yon, B., Oncu, M.E., Varolgunes, S., Karasin, A. and Cemalgil, S. (2022), "Field reconnaissance and structural assessment of the October 30, 2020, Samos, Aegean Sea earthquake: an example of severe damage due to the basin effect", Nat. Hazard., 112, 75-117. https://doi.org/10.1007/s11069-021-05173-y.
  59. Ozmen, B. (2012), "Turkiye deprem bolgeleri haritalarinin tarihsel gelisimi", Turkiye Jeoloji Bulteni, 55(1), 43-55.
  60. Ozmen, B. and Pampal, S. (2017), "Turkiye Deprem Bolgeleri Haritalarinin Evrimi", Uluslararasi Deprem Muhendisligi ve Sismoloji Konferansi, Eskisehir, Turkiye.
  61. Ozturk, M. (2018), "An evaluation about 2018 Turkey Building Earthquake Regulations and Turkey earthquake hazards map based on Central Anatolia Region", J. Selcuk-Technic, 17(2), 31-42.
  62. Papanikolaou, V.K. and Elnashai, A.S. (2005), "Evaluation of conventional and adaptive pushover analysis I: Methodology", J. Earthq. Eng., 9(06), 923-941.
  63. Peker, F.u. and Isik, E. (2021), "TBDY-2018'deki yerel zemin kosullarinin celik yapi deprem davranisina etkisi uzerine bir calisma", Bitlis Eren universitesi Fen Bilimleri Dergisi, 10(3), 1125-1139. https://doi.org/10.17798/bitlisfen.915996.
  64. Pinto, P.E. and Franchin, P. (2011), "Eurocode 8-Part 3: Assessment and retrofitting of buildings, Eurocode 8 background and applications", Dissemination of Information for Training, Lisbon, Portugal.
  65. Seismosoft (2022), SeismoStruct 2022-A Computer Program for Static and Dynamic Nonlinear Analysis of Framed Structures, https://seismosoft.com.
  66. Seyrek, E. (2020), "Evaluation of new seismic hazard map of Turkey for Aegean Region", NOHU J. Eng. Sci., 9, 414-423.
  67. Shkodrani, N. and Bilgin, H. (2021), "Seismic performance of existing low-rise URM buildings considering the addition of new stories", Struct. Eng. Mech., 79(6), 767-777. https://doi.org/10.12989/sem.2021.79.6.767.
  68. Shehu, R., Angjeliu, G. and Bilgin, H. (2019), "A simple approach for the design of ductile earthquake-resisting frame structures counting for P-delta effect", Build., 9(10), 216. https://doi.org/10.3390/buildings9100216.
  69. Strukar, K., Sipos, T.K., Jelec, M. and Hadzima-Nyarko, M. (2019), "Efficient damage assessment for selected earthquake records based on spectral matching", Earthq. Struct., 17(3), 271-282. https://doi.org/10.12989/eas.2019.17.3.271.
  70. Sucuoglu H. (2019), "New improvements in the 2019 building earthquake code of Turkey", Turk. J. Earthq. Res., 1(1), 63-75.
  71. Tabrizikahou, A., Hadzima-Nyarko, M., Kuczma, M. and Lozancic, S. (2021), "Application of shape memory alloys in retrofitting of masonry and heritage structures based on their vulnerability revealed in the Bam 2003 earthquake", Mater., 14(16), 4480. https://doi.org/10.3390/ma14164480.
  72. TBEC-2018 (2018), Turkish Building Earthquake Code, T.C. Resmi Gazete, 30364 Ankara, Turkey.
  73. Ibis, T. and Ulutas, H., (2021), "Yeni yapilacak betonarme bir binanin TBDY 2018'e gore deprem performansinin belirlenmesi", Bitlis Eren universitesi Fen Bilimleri Dergisi, 10(3), 1104-1124. https://doi.org/10.17798/bitlisfen.914069.
  74. TSDC-2007 (2007), Turkish Seismic Design Code, T.C. Resmi Gazete, Ankara, Turkey.
  75. Ulutas, H. (2019), "DBYBHY (2007) ve TBDY (2018) deprem yonetmeliklerinin kesit hasar sinirlari acisindan kiyaslanmasi'', Avrupa Bilim ve Teknoloji Dergisi, 17, 351-359. https://doi.org/10.31590/ejosat.620827.
  76. Yalin, M. and Ulutas, H. (2021), "Mevcut okul turu bir binanin deprem performansinin 2007 ve 2018 deprem yonetmeliklerine gore degerlendirilmesi", Nigde Omer Halisdemir universitesi Muhendislik Bilimleri Dergisi, 10(2), 648-661. https://doi.org/10.28948/ngumuh.896637.
  77. Wang, Z., Martinez-Vazquez, P. and Zhao, B. (2020), "Pushover analysis of structures subjected to combined actions of earthquake and wind'', Eng. Struct., 221, 111034. https://doi.org/10.1016/j.engstruct.2020.111034.
  78. Xian, L., He, Z. and Ou, X. (2016), "Incorporation of collapse safety margin into direct earthquake loss estimate", Earthq. Struct., 10(2), 429-450. https://doi.org/10.12989/eas.2016.10.2.429.