DOI QR코드

DOI QR Code

A semi-analytical procedure for cross section effect on the buckling and dynamic stability of composite imperfect truncated conical microbeam

  • Zhang, Peng (Faculty of Architecture and Civil Engineering, Huaiyin Institute of Technology) ;
  • Gao, Yanan (Faculty of Architecture and Civil Engineering, Huaiyin Institute of Technology) ;
  • Moradi, Zohre (Faculty of Engineering and Technology, Department of Electrical Engineering, Imam Khomeini International University) ;
  • Ali, Yasar Ameer (Building and Construction Techniques Engineering Department, Al-Mustaqbal University College) ;
  • Khadimallah, Mohamed Amine (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department)
  • 투고 : 2021.05.09
  • 심사 : 2022.07.29
  • 발행 : 2022.08.10

초록

The present study tackles the problem of forced vibration of imperfect axially functionally graded shell structure with truncated conical geometry. The linear and nonlinear large-deflection of the structure are considered in the mathematical formulation using von-Kármán models. Modified coupled stress method and principle of minimum virtual work are employed in the modeling to obtain the final governing equations. In addition, formulations of classical elasticity theory are also presented. Different functions, including the linear, convex, and exponential cross-section shapes, are considered in the grading material modeling along the thickness direction. The grading properties of the material are a direct result of the porosity change in the thickness direction. Vibration responses of the structure are calculated using the semi-analytical method of a couple of homotopy perturbation methods (HPM) and the generalized differential quadrature method (GDQM). Contradicting effects of small-scale, porosity, and volume fraction parameters on the nonlinear amplitude, frequency ratio, dynamic deflection, resonance frequency, and natural frequency are observed for shell structure under various boundary conditions.

키워드

과제정보

This work is supported by the Jiangsu Natural Science Foundation (BK20181061) and National Natural Science Foundation of China (11902123).

참고문헌

  1. Abazid, M.A. (2019), "The nonlocal strain gradient theory for hygrothermo-electromagnetic effects on buckling, vibration and wave propagation in piezoelectromagnetic nanoplates", J. Appl. Mech., 11(7), 1950067. https://doi.org/10.1142/s1758825119500674.
  2. Abouelregal, A.E., Mohammad-Sedighi, H., Faghidian, S.A. and Shirazi, A.H. (2021), "Temperature-dependent physical characteristics of the rotating nonlocal nanobeams subject to a varying heat source and a dynamic load", Facta Universitatis, Series: Mech. Eng., 19(4), 633-656. https://doi.org/10.22190/FUME201222024A.
  3. Ahmad Pour, M., Golmakani, M. and Malikan, M. (2021), "Thermal buckling analysis of circular bilayer graphene sheets resting on an elastic matrix based on nonlocal continuum mechanics", J. Appl. Comput. Mech., 7(4), 1862-1877. https://doi.org/10.22055/JACM.2019.31299.1859.
  4. Al-Furjan, M., Moghadam, S.A., Dehini, R., Shan, L., Habibi, M. and Safarpour, H. (2020a), "Vibration control of a smart shell reinforced by graphene nanoplatelets under external load: Seminumerical and finite element modeling", Thin-Walled Struct., 107242. https://doi.org/10.1016/j.tws.2020.107242.
  5. Al-Furjan, M.S.H., Alzahrani, B., Shan, L., Habibi, M. and Jung, D.W. (2020b), "Nonlinear forced vibrations of nanocompositereinforced viscoelastic thick annular system under hygrothermal environment", Mech. Based Design Struct. Machines, 1-27. https://doi.org/10.1080/15397734.2020.1824795.
  6. Al-Furjan, M.S.H., Oyarhossein, M.A., Habibi, M., Safarpour, H. and Jung, D.W. (2020c), "Frequency and critical angular velocity characteristics of rotary laminated cantilever microdisk via two-dimensional analysis", Thin-Walled Struct., 157, 107111. https://doi.org/10.1016/j.tws.2020.107111.
  7. Al-shujairi, M. and Mollamahmutoglu, C. (2018), "Buckling and free vibration analysis of functionally graded sandwich microbeams resting on elastic foundation by using nonlocal strain gradient theory in conjunction with higher order shear theories under thermal effect", Compos. Part B Eng., 154, 292-312. https://doi.org/10.1016/j.compositesb.2018.08.103.
  8. Ansari, R., Gholami, R., Faghih Shojaei, M., Mohammadi, V. and Sahmani, S. (2015), "Bending, buckling and free vibration analysis of size-dependent functionally graded circular/annular microplates based on the modified strain gradient elasticity theory", European J. Mech. A/Solids., 49, 251-267. https://doi.org/10.1016/j.euromechsol.2014.07.014.
  9. Arefi, M. (2018), "Nonlocal free vibration analysis of a doubly curved piezoelectric nano shell", Steel Compos. Struct., 27(4), 479-493. https://doi.org/10.12989/SCS.2018.27.4.479.
  10. Ates, I. and Zegeling, P.A. (2017), "A homotopy perturbation method for fractional-order advection-diffusion-reaction boundary-value problems", Appl. Math. Modelling, 47, 425-441. https://doi.org/10.1016/j.apm.2017.03.006.
  11. Azimi, M., Mirjavadi, S.S., Shafiei, N. and Hamouda, A.M.S. (2016), "Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam", Appl. Phys. A, 123(1), 104. https://doi.org/10.1007/s00339-016-0712-5.
  12. Azimi, M., Mirjavadi, S.S., Shafiei, N., Hamouda, A.M.S. and Davari, E. (2018), "Vibration of rotating functionally graded Timoshenko nano-beams with nonlinear thermal distribution", Mech. Adv. Mater. Struct., 25(6), 467-480. https://doi.org/10.1080/15376494.2017.1285455.
  13. Azrar, L., Benamar, R. and White, R.G. (2002), "A semi-analytical approach to the non-linear dynamic response problem of beams at large vibration amplitudes, part ii: multimode approach to the steady state forced periodic response", J. Sound Vib., 255(1), 1-41. https://doi.org/10.1006/jsvi.2000.3595.
  14. Babaei, H. and Eslami, M.R. (2019), "Nonlinear snap-through instability of FGM shallow micro-arches with integrated surface piezoelectric layers based on modified couple stress theory", J. Sturct. Stability Dynam., 19(08), 1950088. https://doi.org/10.1142/s0219455419500883.
  15. Bambe Moutsinga, C.R., Pindza, E. and Mare, E. (2018), "Homotopy perturbation transform method for pricing under pure diffusion models with affine coefficients", J. King Saud U Sci., 30(1), 1-13. https://doi.org/10.1016/j.jksus.2016.09.004.
  16. Behdad, S., Fakher, M., Naderi, A. and Hosseini-Hashemi, S. (2021), "Vibrations of defected local/nonlocal nanobeams surrounded with two-phase Winkler-Pasternak medium: nonclassic compatibility conditions and exact solution", Waves Random Complex Media, 1-36. https://doi.org/10.1080/17455030.2021.1918796.
  17. Cai, L., Xiong, L., Cao, J., Zhang, H. and Alsaadi, F.E. (2022), "State quantized sampled-data control design for complex-valued memristive neural networks", J. Franklin Institute, 359(9), 4019-4053. https://doi.org/10.1016/j.jfranklin.2022.04.016.
  18. Cao, Y., Khorami, M., Baharom, S., Assilzadeh, H. and Hassan Dindarloo, M. (2021), "The effects of multi-directional functionally graded materials on the natural frequency of the doubly-curved nanoshells", Compos. Struct., 258, 113403. https://doi.org/10.1016/j.compstruct.2020.113403.
  19. Chen, F., Zhong, Y., Gao, X., Jin, Z., Wang, E., Zhu, F., Shao, X. and He, X. (2021a), "Non-uniform model of relationship between surface strain and rust expansion force of reinforced concrete", Scientific Reports, 11(1), 8741. https://doi.org/10.1038/s41598-021-88146-2.
  20. Chen, F., Jin, Z., Wang, E., Wang, L., Jiang, Y., Guo, P., Gao, X. and He, X. (2021b), "Relationship model between surface strain of concrete and expansion force of reinforcement rust", Scientific Reports, 11(1), 4208. https://doi.org/10.1038/s41598-021-83376-w.
  21. Cheshmeh, E., Karbon, M., Eyvazian, A., Jung, D., Habibi, M. and Safarpour, M. (2020), "Buckling and vibration analysis of FGCNTRC plate subjected to thermo-mechanical load based on higher order shear deformation theory", Mech. Based Design Struct. Machines, 50(4), 1-24. https://doi.org/10.1080/15397734.2020.1744005.
  22. Dai, Z., Jiang, Z., Zhang, L. and Habibi, M. (2021), "Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell", Adv. Nano Res., 10(2), 175. https://doi.org/10.12989/anr.2021.10.2.175.
  23. Ebrahimi, F. and Seyfi, A. (2020), "Wave propagation analysis of smart inhomogeneous piezoelectric nanosize beams rested on an elastic medium", Waves Random Complex Media, 32(3), 1-20. https://doi.org/10.1080/17455030.2020.1817625.
  24. Ebrahimi, F. and Shafiei, N. (2016), "Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart Struct. Syst., 17(5), 837-857. https://doi.org/10.12989/sss.2016.17.5.837.
  25. Ebrahimi, F. and Shafiei, N. (2017), "Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy's higherorder shear deformation plate theory", Mech. Adv. Mater. Struct., 24(9), 761-772. https://doi.org/10.1080/15376494.2016.1196781.
  26. Ebrahimi, F., Shafiei, N., Kazemi, M. and Mousavi Abdollahi, S.M. (2017), "Thermo-mechanical vibration analysis of rotating nonlocal nanoplates applying generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(15), 1257-1273. https://doi.org/10.1080/15376494.2016.1227499.
  27. Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., 5(2), 141. https://doi.org/10.12989/anr.2017.5.2.141.
  28. Emadi, M., Nejad Mohammad, Z., Ziaee, S. and Hadi, A. (2021), "Buckling analysis of arbitrary two-directional functionally graded nano-plate based on nonlocal elasticity theory using generalized differential quadrature method", Steel Compos. Struct., 39(5), 565-581. https://doi.org/10.12989/SCS.2021.39.5.565.
  29. Gao, N., Zhang, Z., Deng, J., Guo, X., Cheng, B. and Hou, H. (2022), "Acoustic Metamaterials for Noise Reduction: A Review", Adv. Mater. Technol., 7(6), 2100698. https://doi.org/10.1002/admt.202100698.
  30. Ghadiri, M., Hosseini, S.H.S. and Shafiei, N. (2016a), "A power series for vibration of a rotating nanobeam with considering thermal effect", Mech. Adv. Mater. Struct., 23(12), 1414-1420. https://doi.org/10.1080/15376494.2015.1091527.
  31. Ghadiri, M., Mahinzare, M., Shafiei, N. and Ghorbani, K. (2017a), "On size-dependent thermal buckling and free vibration of circular FG Microplates in thermal environments", Microsyst. Technol., 23(10), 4989-5001. https://doi.org/10.1007/s00542-017-3308-x.
  32. Ghadiri, M. and Shafiei, N. (2016a), "Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen's theory using differential quadrature method", Microsyst. Technol., 22(12), 2853-2867. https://doi.org/10.1007/s00542-015-2662-9.
  33. Ghadiri, M. and Shafiei, N. (2016b), "Vibration analysis of a nano-turbine blade based on Eringen nonlocal elasticity applying the differential quadrature method", J. Vib. Control, 23(19), 3247-3265. https://doi.org/10.1177/1077546315627723.
  34. Ghadiri, M. and Shafiei, N. (2016c), "Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions", Acta Astronautica, 121, 221-240. https://doi.org/10.1016/j.actaastro.2016.01.003.
  35. Ghadiri, M., Shafiei, N. and Akbarshahi, A. (2016b), "Influence of thermal and surface effects on vibration behavior of nonlocal rotating Timoshenko nanobeam", Appl. Phys. A, 122(7), 673. https://doi.org/10.1007/s00339-016-0196-3.
  36. Ghadiri, M., Shafiei, N. and Alavi, H. (2017b), "Thermomechanical vibration of orthotropic cantilever and propped cantilever nanoplate using generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(8), 636-646. https://doi.org/10.1080/15376494.2016.1196770.
  37. Ghadiri, M., Shafiei, N. and Alavi, H. (2017c), "Vibration analysis of a rotating nanoplate using nonlocal elasticity theory", J. Solid Mech., 9(2), 319-337. https://dorl.net/dor/20.1001.1.20083505.2017.9.2.8.5. 1001.1.20083505.2017.9.2.8.5
  38. Ghadiri, M., Shafiei, N. and Alireza Mousavi, S. (2016c), "Vibration analysis of a rotating functionally graded tapered microbeam based on the modified couple stress theory by DQEM", Appl. Phys. A, 122(9), 837. https://doi.org/10.1007/s00339-016-0364-5.
  39. Ghadiri, M., Shafiei, N. and Babaei, R. (2017d), "Vibration of a rotary FG plate with consideration of thermal and Coriolis effects", Steel Compos. Struct., 25(2), 197-207. https://doi.org/10.12989/SCS.2017.25.2.197.
  40. Ghadiri, M., Shafiei, N. and Safarpour, H. (2017e), "Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen's nonlocal elasticity", Microsyst. Technol., 23(4), 1045-1065. https://doi.org/10.1007/s00542-016-2822-6.
  41. Ghadiri, M., Shafiei, N., Salekdeh, S.H., Mottaghi, P. and Mirzaie, T. (2016d), "Investigation of the dental implant geometry effect on stress distribution at dental implant-bone interface", J. Brazilian Soc. MEch. Sci. Eng., 38(2), 335-343. https://doi.org/10.1007/s40430-015-0472-8.
  42. Guo, J., Baharvand, A., Tazeddinova, D., Habibi, M., Safarpour, H., Roco-Videla, A. and Selmi, A. (2021), "An intelligent computer method for vibration responses of the spinning multilayer symmetric nanosystem using multi-physics modeling", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01433-4.
  43. Gupta, S., Kumar, D. and Singh, J. (2015), "Analytical solutions of convection-diffusion problems by combining Laplace transform method and homotopy perturbation method", Alexandria Eng. J., 54(3), 645-651. https://doi.org/10.1016/j.aej.2015.05.004.
  44. Habibi, M., Darabi, R., Sa, J.C.D. and Reis, A. (2021), "An innovation in finite element simulation via crystal plasticity assessment of grain morphology effect on sheet metal formability", Proc. Institution Mech. Engineers, Part L J. Mater.: Design Appl., 235(8), 1937-1951. https://doi.org/10.1177/14644207211024686.
  45. Habibi, M., Hashemabadi, D. and Safarpour, H. (2019a), "Vibration analysis of a high-speed rotating GPLRC nanostructure coupled with a piezoelectric actuator", European Phys. J. Plus, 134(6), 307. https://doi.org/10.1140/epjp/i2019-12742-7.
  46. Habibi, M., Mohammadi, A., Safarpour, H., Shavalipour, A. and Ghadiri, M. (2019b), "Wave propagation analysis of the laminated cylindrical nanoshell coupled with a piezoelectric actuator", Mech. Based Design Struct. Machines, 49(5), 1-19. https://doi.org/10.1080/15397734.2019.1697932.
  47. Hashemi, H.R., Alizadeh, A.a., Oyarhossein, M.A., Shavalipour, A., Makkiabadi, M. and Habibi, M. (2019), "Influence of imperfection on amplitude and resonance frequency of a reinforcement compositionally graded nanostructure", Waves Random Complex Media, 31(6), 1-27. https://doi.org/10.1080/17455030.2019.1662968.
  48. He, J.H. (2002a), "Modified Lindstedt-Poincare methods for some strongly non-linear oscillations: Part I: Expansion of a constant", J. Non-Linear Mech., 37(2), 309-314. http://dx.doi.org/10.1016/S0020-7462(00)00116-5.
  49. He, J.H. (2002b), "Modified Lindstedt-Poincare methods for some strongly non-linear oscillations: Part II: a new transformation", J. Non-Linear Mech., 37(2), 315-320. http://dx.doi.org/10.1016/S0020-7462(00)00117-7.
  50. He, X., Ding, J., Habibi, M., Safarpour, H. and Safarpour, M. (2021), "Non-polynomial framework for bending responses of the multi-scale hybrid laminated nanocomposite reinforced circular/annular plate", Thin-Walled Struct., 166, 108019. https://doi.org/10.1016/j.tws.2021.108019.
  51. Hou, F., Wu, S., Moradi, Z. and Shafiei, N. (2021), "The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-021-01456-x.
  52. Huang, X., Hao, H., Oslub, K., Habibi, M. and Tounsi, A. (2021a), "Dynamic stability/instability simulation of the rotary sizedependent functionally graded microsystem", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01399-3.
  53. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2021b), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform microtube", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-021-01395-7.
  54. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2021c), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform microtube", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-021-01395-7.
  55. Karami, B. and Shahsavari, D. (2020), "On the forced resonant vibration analysis of functionally graded polymer composite doubly-curved nanoshells reinforced with graphenenanoplatelets", Comput. Methods Appl. Mech. Eng., 359, 112767. https://doi.org/10.1016/j.cma.2019.112767.
  56. Li, X., Li, L. and Hu, Y. (2018), "Instability of functionally graded micro-beams via micro-structure-dependent beam theory", Appl. Math. Mech., 39(7), 923-952. https://doi.org/10.1007/s10483-018-2343-8.
  57. Liu, H., Zhao, Y., Pishbin, M., Habibi, M., Bashir, M. and Issakhov, A. (2021), "A comprehensive mathematical simulation of the composite size-dependent rotary 3D microsystem via two-dimensional generalized differential quadrature method", Eng. Comput., 1-16. https://doi.org/10.1007/s00366-021-01419-2.
  58. Liu, Z.-J., Adamu, M.Y., Suleiman, E. and He, J.H. (2017), "Hybridization of homotopy perturbation method and Laplace transformation for the partial differential equations", Thermal Sci., 21(4), 1843-1846. https://doi.org/10.2298/TSCI160715078L.
  59. Liu, Z., Su, S., Xi, D. and Habibi, M. (2020a), "Vibrational responses of a MHC viscoelastic thick annular plate in thermal environment using GDQ method", Mech. Based Design Struct. Machines, 1-26. https://doi.org/10.1080/15397734.2020.1784201.
  60. Liu, Z., Wu, X., Yu, M. and Habibi, M. (2020b), "Large-amplitude dynamical behavior of multilayer graphene platelets reinforced nanocomposite annular plate under thermo-mechanical loadings", Mech. Based Design Struct. Machines, 1-25. https://doi.org/10.1080/15397734.2020.1815544.
  61. Long, X., Jia, Q., Shen, Z., Liu, M. and Guan, C. (2021), "Strain rate shift for constitutive behaviour of sintered silver nanoparticles under nanoindentation", Mech. Mater., 158, 103881. https://doi.org/10.1016/j.mechmat.2021.103881.
  62. Lori, E.S., Ebrahimi, F., Supeni, E.E.B., Habibi, M. and Safarpour, H. (2020), "The critical voltage of a GPL-reinforced composite microdisk covered with piezoelectric layer", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-020-01004-z.
  63. Lu, N., Wang, H., Wang, K. and Liu, Y. (2021), "Maximum probabilistic and dynamic traffic load effects on short-tomedium span bridges", Comput. Modelling Eng. Sci., 127(1), 345-360. https://doi.org/10.32604/cmes.2021.013792.
  64. Luo, Y., Xie, Y., Jiang, H., Chen, Y., Zhang, L., Sheng, X., Xie, D., Wu, H. and Mei, Y. (2021a), "Flame-retardant and form-stable phase change composites based on MXene with high thermostability and thermal conductivity for thermal energy storage", Chem. Eng. J., 420, 130466. https://doi.org/10.1016/j.cej.2021.130466.
  65. Luo, Y., Zheng, H., Zhang, H. and Liu, Y. (2021b), "Fatigue reliability evaluation of aging prestressed concrete bridge accounting for stochastic traffic loading and resistance degradation", Adv. Struct. Eng., 24(13), 3021-3029. https://doi.org/10.1177/13694332211017995.
  66. Ma, X., Quan, W., Dong, Z., Dong, Y. and Si, C. (2022), "Dynamic response analysis of vehicle and asphalt pavement coupled system with the excitation of road surface unevenness", Appl. Math. Modelling, 104, 421-438. https://doi.org/10.1016/j.apm.2021.12.005.
  67. Malekzadeh, P. and Shojaee, M. (2013), "Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams", Compos. Part B Eng., 52, 84-92. https://doi.org/10.1016/j.compositesb.2013.03.046.
  68. Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A., Kazemi, M. and Structures, C. (2017a), "Thermal vibration of twodimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415.
  69. Mirjavadi, S.S., Matin, A., Shafiei, N., Rabby, S. and Mohasel Afshari, B. (2017b), "Thermal buckling behavior of twodimensional imperfect functionally graded microscale-tapered porous beam", J. Thermal Stresses, 40(10), 1201-1214. https://doi.org/10.1080/01495739.2017.1332962.
  70. Mirjavadi, S.S., Mohasel Afshari, B., Shafiei, N., Rabby, S. and Kazemi, M. (2017c), "Effect of temperature and porosity on the vibration behavior of two-dimensional functionally graded micro-scale Timoshenko beam", J. Vib. Control, 24(18), 4211-4225. https://doi.org/10.1177/1077546317721871.
  71. Mirjavadi, S.S., Rabby, S., Shafiei, N., Afshari, B.M. and Kazemi, M. (2017d), "On size-dependent free vibration and thermal buckling of axially functionally graded nanobeams in thermal environment", Appl. Phys. A, 123(5), 315. https://doi.org/10.1007/s00339-017-0918-1.
  72. Mou, B. and Bai, Y. (2018), "Experimental investigation on shear behavior of steel beam-to-CFST column connections with irregular panel zone", Eng. Struct., 168, 487-504. https://doi.org/10.1016/j.engstruct.2018.04.029.
  73. Najaafi, N., Jamali, M., Habibi, M., Sadeghi, S., Jung, D.w. and Nabipour, N. (2020), "Dynamic instability responses of the substructure living biological cells in the cytoplasm environment using stress-strain size-dependent theory", J. Biomolecular Struct. Dynam., 39(7), 2543-2554. https://doi.org/10.1080/07391102.2020.1751297.
  74. Nazemnezhad, R. and Hosseini-Hashemi, S. (2014), "Nonlocal nonlinear free vibration of functionally graded nanobeams", Compos. Struct., 110, 192-199. https://doi.org/10.1016/j.compstruct.2013.12.006.
  75. Pan, S., Dai, Q., Safaei, B., Qin, Z. and Chu, F. (2021), "Damping characteristics of carbon nanotube reinforced epoxy nanocomposite beams", Thin-Walled Struct., 166, 108127. https://doi.org/10.1016/j.tws.2021.108127.
  76. Pourabdy, M., Shishesaz, M., Shahrooi, S. and Roknizadeh, S.A. (2021), "Analysis of axisymmetric vibration of functionallygraded circular nano-plate based on the integral form of the strain gradient model", J. Appl. Comput. Mech., 7(4), 2196-2220. https://doi.org/10.22055/JACM.2021.37461.3021.
  77. Safarpour, M., Rahimi, A. and Alibeigloo, A. (2019), "Static and free vibration analysis of graphene platelets reinforced composite truncated conical shell, cylindrical shell, and annular plate using theory of elasticity and DQM", Mech. Based Design Struct. Machines, 48(4), 496-524. https://doi.org/10.1080/15397734.2019.1646137.
  78. Sahmani, S., Aghdam, M.M. and Rabczuk, T. (2018), "Nonlocal strain gradient plate model for nonlinear large-amplitude vibrations of functionally graded porous micro/nano-plates reinforced with GPLs", Compos. Struct., 198, 51-62. https://doi.org/10.1016/j.compstruct.2018.05.031.
  79. Sahmani, S. and Safaei, B. (2021), "Large-amplitude oscillations of composite conical nanoshells with in-plane heterogeneity including surface stress effect", Appl. Math. Modelling, 89 1792-1813. https://doi.org/10.1016/j.apm.2020.08.039.
  80. Sakar, M.G., Uludag, F. and Erdogan, F. (2016), "Numerical solution of time-fractional nonlinear PDEs with proportional delays by homotopy perturbation method", Appl. Math. Modelling, 40(13), 6639-6649. https://doi.org/10.1016/j.apm.2016.02.005.
  81. Shafiei, N., Ghadiri, M. and Mahinzare, M. (2019), "Flapwise bending vibration analysis of rotary tapered functionally graded nanobeam in thermal environment", Mech. Adv. Mater. Struct., 26(2), 139-155. https://doi.org/10.1080/15376494.2017.1365982.
  82. Shafiei, N., Ghadiri, M., Makvandi, H. and Hosseini, S.A. (2017a), "Vibration analysis of Nano-Rotor's Blade applying Eringen nonlocal elasticity and generalized differential quadrature method", Appl. Math. Modelling, 43, 191-206. https://doi.org/10.1016/j.apm.2016.10.061.
  83. Shafiei, N., Hamisi, M. and Ghadiri, M. (2020), "Vibration analysis of rotary tapered axially functionally graded Timoshenko nanobeam in thermal environment", J. Solid Mech., 12(1), 16-32. https://doi.org/.10.22034/JSM.2019.563759.1273
  84. Shafiei, N. and Kazemi, M. (2017a), "Buckling analysis on the bidimensional functionally graded porous tapered nano-/microscale beams", Aerosp. Sci. Technol., 66, 1-11. https://doi.org/10.1016/j.ast.2017.02.019.
  85. Shafiei, N. and Kazemi, M. (2017b), "Nonlinear buckling of functionally graded nano-/micro-scaled porous beams", Compos. Struct., 178, 483-492. https://doi.org/10.1016/j.compstruct.2017.07.045.
  86. Shafiei, N., Kazemi, M. and Fatahi, L. (2017b), "Transverse vibration of rotary tapered microbeam based on modified couple stress theory and generalized differential quadrature element method", Mech. Adv. Mater. Struct., 24(3), 240-252. https://doi.org/10.1080/15376494.2015.1128025.
  87. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016a), "Comparison of modeling of the rotating tapered axially functionally graded Timoshenko and Euler-Bernoulli microbeams", Physica E: Low-dimensional Syst. Nanostruct., 83 74-87. https://doi.org/10.1016/j.physe.2016.04.011.
  88. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016b), "Nonlinear vibration behavior of a rotating nanobeam under thermal stress using Eringen's nonlocal elasticity and DQM", Appl. Phys. A, 122(8), 728. https://doi.org/10.1007/s00339-016-0245-y.
  89. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016c), "Nonlinear vibration of axially functionally graded tapered microbeams", J. Eng. Sci., 102, 12-26. https://doi.org/10.1016/j.ijengsci.2016.02.007.
  90. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016d), "On sizedependent vibration of rotary axially functionally graded microbeam", J. Eng. Sci., 101, 29-44. https://doi.org/10.1016/j.ijengsci.2015.12.008.
  91. Shafiei, N., Kazemi, M., Safi, M. and Ghadiri, M. (2016e), "Nonlinear vibration of axially functionally graded non-uniform nanobeams", J. Eng. Sci., 106, 77-94. https://doi.org/10.1016/j.ijengsci.2016.05.009.
  92. Shafiei, N., Mirjavadi, S.S., Afshari, B.M., Rabby, S. and Hamouda, A.M.S. (2017c), "Nonlinear thermal buckling of axially functionally graded micro and nanobeams", Compos. Struct., 168, 428-439. https://doi.org/10.1016/j.compstruct.2017.02.048.
  93. Shafiei, N., Mirjavadi, S.S., MohaselAfshari, B., Rabby, S. and Kazemi, M. (2017d), "Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams", Comput. Methods Appl. Mech. Eng., 322, 615-632. https://doi.org/10.1016/j.cma.2017.05.007.
  94. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016f), "On sizedependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams", J. Eng. Sci., 106, 42-56. https://doi.org/10.1016/j.ijengsci.2016.05.007.
  95. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016g), "Vibration behavior of a rotating non-uniform FG microbeam based on the modified couple stress theory and GDQEM", Compos. Struct., 149, 157-169. https://doi.org/10.1016/j.compstruct.2016.04.024.
  96. Shafiei, N. and She, G.L. (2018), "On vibration of functionally graded nano-tubes in the thermal environment", J. Eng. Sci., 133, 84-98. https://doi.org/10.1016/j.ijengsci.2018.08.004.
  97. Shao, Y., Zhao, Y., Gao, J. and Habibi, M. (2021), "Energy absorption of the strengthened viscoelastic multi-curved composite panel under friction force", Archives Civil Mech. Eng., 21(4), 1-29. https://doi.org/10.1007/s43452-021-00279-3.
  98. Shariati, A., Ghabussi, A., Habibi, M., Safarpour, H., Safarpour, M., Tounsi, A. and Safa, M. (2020a), "Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation", Thin-Walled Struct., 154, 106840. https://doi.org/10.1016/j.tws.2020.106840.
  99. Shariati, A., Jung, D.w., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020b), "On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams", Materials, 13(7), 1707. https://doi.org/10.3390/ma13071707.
  100. Shariati, A., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020c), "Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters", Symmetry, 12(4), 586. https://doi.org/10.3390/sym12040586.
  101. Shivanian, E., Ghadiri, M. and Shafiei, N. (2017), "Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation", Appl. Phys. A, 123(5), 329. https://doi.org/10.1007/s00339-017-0955-9.
  102. Wang, A., Chen, H., Hao, Y. and Zhang, W. (2018), "Vibration and bending behavior of functionally graded nanocomposite doublycurved shallow shells reinforced by graphene nanoplatelets", Results Phys., 9, 550-559. https://doi.org/10.1016/j.rinp.2018.02.062.
  103. Wang, C.M., Zhang, Y.Y. and He, X.Q. (2007), "Vibration of nonlocal Timoshenko beams", Nanotechnology, 18(10), 105401. https://doi.org/10.1088/0957-4484/18/10/105401.
  104. Wang, P., Gao, Z., Pan, F., Moradi, Z., Mahmoudi, T. and Khadimallah, M.A. (2022), "A couple of GDQM and iteration techniques for the linear and nonlinear buckling of bidirectional functionally graded nanotubes based on the nonlocal strain gradient theory and high-order beam theory", Eng. Analysis with Boundary Elements, 143, 124-136. https://doi.org/10.1016/j.enganabound.2022.06.007.
  105. Wang, Z., Yu, S., Xiao, Z. and Habibi, M. (2020), "Frequency and buckling responses of a high-speed rotating fiber metal laminated cantilevered microdisk", Mech. Adv. Mater. Struct., 1-14. https://doi.org/10.1080/15376494.2020.1824284.
  106. Wu, J. and Habibi, M. (2021), "Dynamic simulation of the ultrafast-rotating sandwich cantilever disk via finite element and semi-numerical methods", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01396-6.
  107. Xiao, G., Chen, B., Li, S. and Zhuo, X. (2022), "Fatigue life analysis of aero-engine blades for abrasive belt grinding considering residual stress", Eng. Failure Analysis, 131, 105846. https://doi.org/10.1016/j.engfailanal.2021.105846.
  108. Xiong, Q.M., Chen, Z., Huang, J.T., Zhang, M., Song, H., Hou, X.F., Li, X.B. and Feng, Z.J. (2020), "Preparation, structure and mechanical properties of Sialon ceramics by transition metalcatalyzed nitriding reaction", Rare Metals, 39(5), 589-596. https://doi.org/10.1007/s12598-020-01385-6.
  109. Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution", Compos. Struct., 114395. https://doi.org/10.1016/j.compstruct.2021.114395.
  110. Yang, G., Feng, X., Wang, W., OuYang, Q. and Liu, L. (2021), "Effective interlaminar reinforcing and delamination monitoring of carbon fibrous composites using a novel nano-carbon woven grid", Compos. Sci. Technol., 213, 108959. https://doi.org/10.1016/j.compscitech.2021.108959.
  111. Yang, J. and Shen, H.S. (2002), "Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environments", J. Sound Vib., 255(3), 579-602. https://doi.org/10.1006/jsvi.2001.4161.
  112. Yu, D.N., He, J.H. and Garcia, A.G. (2018), "Homotopy perturbation method with an auxiliary parameter for nonlinear oscillators", J. Low Frequency Noise, Vib. Active Control, 38(3-4), 1540-1554. https://doi.org/10.1177/1461348418811028.
  113. Zhang, H., Liu, Y. and Deng, Y. (2020), "Temperature gradient modeling of a steel box-girder suspension bridge using Copulas probabilistic method and field monitoring", Adv. Struct. Eng., 24(5), 947-961. https://doi.org/10.1177/1369433220971779.
  114. Zhang, Y., Wang, Z., Tazeddinova, D., Ebrahimi, F., Habibi, M. and Safarpour, H. (2021), "Enhancing active vibration control performances in a smart rotary sandwich thick nanostructure conveying viscous fluid flow by a PD controller", Waves Random Complex Media,1-24. https://doi.org/10.1080/17455030.2021.1948627.
  115. Zhao, Y. (2022), "Stability of phase boundary between L12-Ni3Al phases: A phase field study", Intermetallics, 144, 107528. https://doi.org/10.1016/j.intermet.2022.107528.
  116. Zhao, Y., Liu, K., Hou, H. and Chen, L.Q. (2022), "Role of interfacial energy anisotropy in dendrite orientation in Al-Zn alloys: A phase field study", Mater. Design. 216, 110555. https://doi.org/10.1016/j.matdes.2022.110555.
  117. Zhou, C., Zhao, Y., Zhang, J., Fang, Y. and Habibi, M. (2020), "Vibrational characteristics of multi-phase nanocomposite reinforced circular/annular system", Adv. Nano Res., 9(4), 295-307. https://doi.org/10.12989/anr.2020.9.4.295.
  118. Zhou, J., He, Y., Shen, J., Essa, F.A. and Yu, J. (2021), "Ni/Ni3Al interface-dominated nanoindentation deformation and pop-in events", Nanotechnology, 33(10), 105703. https://doi.org/10.1088/1361-6528/ac3d62.