DOI QR코드

DOI QR Code

A novel prediction model for post-fire elastic modulus of circular recycled aggregate concrete-filled steel tubular stub columns

  • Received : 2021.10.24
  • Accepted : 2022.07.28
  • Published : 2022.08.10

Abstract

The post-fire elastic stiffness and performance of concrete-filled steel tube (CFST) columns containing recycled aggregate concrete (RAC) has rarely been addressed, particularly in terms of material properties. This study was conducted with the aim of assessing the modulus of elasticity of recycled aggregate concrete-filled steel tube (RACFST) stub columns following thermal loading. The test data were employed to model and assess the elastic modulus of circular RACFST stub columns subjected to axial loading after exposure to elevated temperatures. The length/diameter ratio of the specimens was less than three to prevent the sensitivity of overall buckling for the stub columns. The gene expression programming (GEP) method was employed for the model development. The GEP model was derived based on a comprehensive experimental database of heated and non-heated RACFST stub columns that have been properly gathered from the open literature. In this study, by using specifications of 149 specimens, the variables were the steel section ratio, applied temperature, yielding strength of steel, compressive strength of plain concrete, and elastic modulus of steel tube and concrete core (RAC). Moreover, parametric and sensitivity analyses were also performed to determine the contribution of different effective parameters to the post-fire elastic modulus. Additionally, comparisons and verification of the effectiveness of the proposed model were made between the values obtained from the GEP model and the formulas proposed by different researchers. Through the analyses and comparisons of the developed model against formulas available in the literature, the acceptable accuracy of the model for predicting the post-fire modulus of elasticity of circular RACFST stub columns was seen.

Keywords

References

  1. Arioz, O. (2007), "Effects of elevated temperatures on properties of concrete", Fire Safety J., 42(8), 516-522. https://doi.org/10.1016/j.firesaf.2007.01.003.
  2. Ashrafian, A., Shahmansouri, A.A., Akbarzadeh Bengar, H. and Behnood, A. (2022), "Post-fire behavior evaluation of concrete mixtures containing natural zeolite using a novel metaheuristicbased machine learning method", Archive. Civil Mech. Eng., 22(2), 101. https://doi.org/10.1007/s43452-022-00415-7.
  3. Ashteyat, A., Obaidat, Y.T., Murad, Y.Z. and Haddad, R. (2020), "Compressive strength prediction of lightweight short columns at elevated temperature using gene expression programing and artificial neural network", J. Civil Eng. Manage., 26(2), 189-199. https://doi.org/10.3846/jcem.2020.11931.
  4. Asteris, P.G., Lemonis, M.E., Nguyen, T.-A., Van Le, H. and Pham, B.T. (2021), "Soft computing-based estimation of ultimate axial load of rectangular concrete-filled steel tubes", Steel Compos. Struct., 39(4), 471. https://doi.org/10.12989/scs.2021.39.4.471.
  5. Avci-Karatas, C. (2019), "Prediction of ultimate load capacity of concrete-filled steel tube columns using multivariate adaptive regression splines (MARS)", Steel Compos. Struct., 33(4), 583-594. https://doi.org/10.12989/scs.2019.33.4.583.
  6. Avci-Karatas, C. (2021), "Modeling approach for estimation of ultimate load capacity of concrete-filled steel tube composite stub columns based on relevance vector machine", Nigde Omer Halisdemir Univ. J. Eng. Sci., 10(2), 615-626. https://doi.org/10.28948/ngumuh.759297.
  7. Avci-Karatas, C. (2022), "Application of machine learning in prediction of shear capacity of headed steel studs in steel-concrete composite structures", Int. J. Steel Struct., 22(2), 539-556. https://doi.org/10.1007/s13296-022-00589-z.
  8. Bengar, H.A. and Shahmansouri, A.A. (2021), "Post-fire behavior of unconfined and steel tube confined rubberized concrete under axial compression", Structures. 32, 731-745. https://doi.org/10.1016/j.istruc.2021.03.041.
  9. Chang, Y.F., Chen, Y.H., Sheu, M.S. and Yao, G.C. (2006), "Residual stress-strain relationship for concrete after exposure to high temperatures", Cement Concrete Res., 36(10), 1999-2005. https://doi.org/10.1016/j.cemconres.2006.05.029.
  10. Che, Y., Wang, Q. and Shao, Y. (2012), "Compressive performances of the concrete filled circular CFRP-steel tube (CCFRP-CFST)", Int. J. Adv. Steel Construct., 8(4), 311-338. https://doi.org/10.18057/IJASC.2012.8.4.2.
  11. Chen, J., Liu, X., Liu, H. and Zeng, L. (2018), "Axial compression behavior of circular recycled concrete-filled steel tubular short columns reinforced by silica fume and steel fiber", Steel Compos. Struct., 27(2), 193-200. https://doi.org/10.12989/scs.2018.27.2.193.
  12. Chen, J., Wang, Y., Roeder, C.W. and Ma, J. (2017), "Behavior of normal-strength recycled aggregate concrete filled steel tubes under combined loading", Eng. Struct., 130 23-40. https://doi.org/10.1016/j.engstruct.2016.09.046.
  13. Chen, Y., He, K., Han, S. and Wei, J. (2018), "Experimental investigation of square concrete filled stainless steel tubular stub columns after exposure to elevated temperatures", Thin-Walled Struct., 130 12-31. https://doi.org/10.1016/j.tws.2018.05.007.
  14. Chen, Z., Liu, X. and Zhou, W. (2018), "Residual bond behavior of high strength concrete-filled square steel tube after elevated temperatures", Steel Compos. Struct., 27(4), 509-523. https://doi.org/10.12989/scs.2018.27.4.509.
  15. Code, P. (2005), Eurocode 2: Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings, British Standard Institution, London.
  16. Falcone, R., Lima, C. and Martinelli, E. (2020), "Soft computing techniques in structural and earthquake engineering: A literature review", Eng. Struct., 207 110269. https://doi.org/10.1016/j.engstruct.2020.110269.
  17. Ferreira, C. (2001), "Gene expression programming: a new adaptive algorithm for solving problems", arXiv preprint cs/0102027. https://doi.org/10.48550/arXiv.cs/0102027.
  18. Ferreira, C. (2002), Gene Expression Programming in Problem Solving, Springer. https://doi.org/10.1007/978-1-4471-0123- 9_54.
  19. Ferreira, C. (2003), Function Finding and the Creation of Numerical Constants in Gene Expression Programming, Springer. https://doi.org/10.1007/978-1-4471-3744-3_25.
  20. Fu, Z., Ji, B., Wu, D. and Yu, Z. (2019), "Behaviour of lightweight aggregate concrete-filled steel tube under horizontal cyclic load", Steel Compos. Struct., 32(6), 717-729. https://doi.org/10.12989/scs.2019.32.6.717.
  21. Gandomi, A.H., Roke, D.A. and Sett, K. (2013), "Genetic programming for moment capacity modeling of ferrocement members", Eng. Struct., 57 169-176. https://doi.org/10.1016/j.engstruct.2013.09.022.
  22. Guneyisi, E.M., Gultekin, A. and Mermerdas, K. (2016), "Ultimate capacity prediction of axially loaded CFST short columns", Int. J. Steel Struct., 16(1), 99-114. https://doi.org/10.1007/s13296-016-3009-9.
  23. Guneyisi, E.M. and Nour, A.I. (2019), "Axial compression capacity of circular CFST columns transversely strengthened by FRP", Eng. Struct., 191 417-431. https://doi.org/10.1016/j.engstruct.2019.04.056.
  24. Hisham, M., Hamdy, G.A. and El-Mahdy, O.O. (2021), "Prediction of temperature variation in FRP-wrapped RC columns exposed to fire using artificial neural networks", Eng. Struct., 238 112219. https://doi.org/10.1016/j.engstruct.2021.112219.
  25. Hu, X., Guo, H. and Yao, Y. (2015), "Interaction approach for concrete filled steel tube columns under fire conditions", J. Build. Eng., 3 144-154. https://doi.org/10.1016/j.jobe.2015.07.006.
  26. Huo, J., Huang, G. and Xiao, Y. (2009), "Effects of sustained axial load and cooling phase on post-fire behaviour of concrete-filled steel tubular stub columns", J. Construct. Steel Res., 65(8-9), 1664-1676. https://doi.org/10.1016/j.jcsr.2009.04.022.
  27. Kabir, M.A.B., Hasan, A.S. and Billah, A.M. (2021), "Failure mode identification of column base plate connection using datadriven machine learning techniques", Eng. Struct., 240 112389. https://doi.org/10.1016/j.engstruct.2021.112389.
  28. Kadhim, I.T. and Guneyisi, E.M. (2018), "Code based assessment of load capacity of steel tubular columns infilled with recycled aggregate concrete under compression", Construct. Build. Mater., 168 715-731. https://doi.org/10.1016/j.conbuildmat.2018.02.088.
  29. Kazmi, S.M.S., Munir, M.J., Wu, Y.-F., Lin, X. and Ahmad, M.R. (2021), "Investigation of thermal performance of concrete incorporating different types of recycled coarse aggregates", Construct. Build. Mater., 270 121433. https://doi.org/10.1016/j.conbuildmat.2020.121433.
  30. Kim, S.-E., Vu, Q.-V., Papazafeiropoulos, G., Kong, Z. and Truong, V.-H. (2020), "Comparison of machine learning algorithms for regression and classification of ultimate load-carrying capacity of steel frames", Steel Compos. Struct., 37(2), 193-209. https://doi.org/10.12989/scs.2020.37.2.193.
  31. Konno, K., Sato, Y., Kakuta, Y. and Ohira, M. (1998), "The property of recycled concrete column encased by steel tube subjected to axial compression", Transact. the Japan Concrete Institute. 19 231-238.
  32. Koza, J.R. (1994), "Genetic programming as a means for programming computers by natural selection", Statistic. Comput., 4(2), 87-112. https://doi.org/10.1007/BF00175355.
  33. Lee, S., Vo, T.P., Thai, H.-T., Lee, J. and Patel, V. (2021), "Strength prediction of concrete-filled steel tubular columns using Categorical Gradient Boosting algorithm", Eng. Struct., 238, 112109. https://doi.org/10.1016/j.engstruct.2021.112109.
  34. Li, W., Luo, Z., Tao, Z., Duan, W.H. and Shah, S.P. (2017), "Mechanical behavior of recycled aggregate concrete-filled steel tube stub columns after exposure to elevated temperatures", Construct. Build. Mater., 146 571-581. https://doi.org/1010.1016/j.conbuildmat.2017.04.118.
  35. Li, W., Luo, Z., Wu, C. and Duan, W.H. (2018), "Impact performances of steel tube-confined recycled aggregate concrete (STCRAC) after exposure to elevated temperatures", Cement Concrete Compos., 86, 87-97. https://doi.org/10.1016/j.cemconcomp.2017.11.009.
  36. Li, W., Luo, Z., Wu, C., Tam, V.W., Duan, W.H. and Shah, S.P. (2017), "Experimental and numerical studies on impact behaviors of recycled aggregate concrete-filled steel tube after exposure to elevated temperature", Mater. Des., 136 103-118. https://doi.org/10.1016/j.matdes.2017.09.057.
  37. Liu, J.-Q., Han, L.-H. and Zhao, X.-L. (2018), "Performance of concrete-filled steel tubular column-wall structure subjected to ISO-834 standard fire: analytical behaviour", Thin-Wall. Struct., 129, 28-44. https://doi.org/1010.1016/j.tws.2018.03.027.
  38. Luat, N.-V., Shin, J., Han, S.W., Nguyen, N.-V. and Lee, K. (2021), "Ultimate axial capacity prediction of CCFST columns using hybrid intelligence models - a new approach", Steel Compos. Struct., 40(3), 461-479. https://doi.org/10.12989/scs.2021.40.3.461.
  39. Mansouri, I., Guneyisi, E.M. and Mosalam, K.M. (2021), "Improved shear strength model for exterior reinforced concrete beam-column joints using gene expression programming", Eng. Struct., 228 111563. https://doi.org/10.1016/j.engstruct.2020.111563.
  40. Memarzadeh, A. and Nematzadeh, M. (2021), "Axial compressive performance of steel reinforced fibrous concrete composite stub columns: Experimental and theoretical study", Struct., 34 2455-2475. https://doi.org/10.1016/j.istruc.2021.08.130.
  41. Memarzadeh, A., Nematzadeh, M. and Ahmadi, M. (2021), "Compressive performance of steel fiber-reinforced concreteencased steel composite stub columns", Modares Civil Eng. J., 21(3), 189-203.
  42. Memarzadeh, A., Nematzadeh, M. and Jafarzadeh, H. (2022), "Experimental Study on Elastic Modulus of Steel Stub Columns Encased in RC Containing Steel Fibers", J. Struct. Construct. Eng., 8(12), 325-343. https://doi.org/10.22065/JSCE.2021.285696.2452.
  43. Memarzadeh, A., Shahmansouri, A.A., Nematzadeh, M. and Gholampour, A. (2021), "A review on fire resistance of steelconcrete composite slim-floor beams", Steel Compos. Struct., 40(1), 13-32. https://doi.org/10.12989/scs.2021.40.1.013.
  44. Meng, F.-Q., Zhu, M.-C., Clifton, G.C., Ukanwa Kingsley, U. and Lim James, B.P. (2021), "Fire performance of edge and interior circular steel-reinforced concrete-filled steel tubular stub columns", Steel Compos. Struct., 41(1), 115-122. https://doi.org/10.12989/scs.2021.41.1.115.
  45. Momeni, M., Hadianfard, M.A., Bedon, C. and Baghlani, A. (2020), "Damage evaluation of H-section steel columns under impulsive blast loads via gene expression programming", Eng. Struct., 219, 110909. https://doi.org/10.1016/j.engstruct.2020.110909.
  46. Naser, M., Thai, S. and Thai, H.-T. (2021), "Evaluating structural response of concrete-filled steel tubular columns through machine learning", J. Build. Eng., 34 101888. https://doi.org/10.1016/j.jobe.2020.101888.
  47. Naser, M.Z., Kodur, V., Thai, H.-T., Hawileh, R., Abdalla, J. and Degtyarev, V.V. (2021), "StructuresNet and FireNet: Benchmarking databases and machine learning algorithms in structural and fire engineering domains", J. Build. Eng., 102977. https://doi.org/10.1016/j.jobe.2021.102977.
  48. Nematzadeh, M., Memarzadeh, A. and Karimi, A. (2020), "Postfire elastic modulus of rubberized fiber-reinforced concretefilled steel tubular stub columns: Experimental and theoretical study", J. Construct. Steel Res., 175, 106310. https://doi.org/10.1016/j.jcsr.2020.106310.
  49. Nematzadeh, M., Shahmansouri, A.A. and Zabihi, R. (2021), "Innovative models for predicting post-fire bond behavior of steel rebar embedded in steel fiber reinforced rubberized concrete using soft computing methods", Structures. 31 1141-1162. https://doi.org/10.1016/j.istruc.2021.02.015.
  50. Nguyen, H.D., Zhang, Q., Choi, E. and Duan, W. (2020), "An improved deflection model for FRP RC beams using an artificial intelligence-based approach", Eng. Struct., 219 110793. https://doi.org/10.1016/j.engstruct.2020.110793.
  51. Nguyen, M.-S., Thai, D.-K. and Kim, S.-E. (2020), "Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network", Steel Compos. Struct., 35(3), 415-437. https://doi.org/10.1016/j.compositesb.2019.106938.
  52. Nguyen, M.S. and Kim, S.-E. (2021), "A hybrid machine learning approach in prediction and uncertainty quantification of ultimate compressive strength of RCFST columns", Construct. Build. Mater., 302 124208. https://doi.org/10.1016/j.conbuildmat.2021.124208.
  53. Nour, A.I. and Guneyisi, E.M. (2019), "Prediction model on compressive strength of recycled aggregate concrete filled steel tube columns", Compos. Part B: Eng., 173 106938. https://doi.org/10.1016/j.compositesb.2019.106938.
  54. Patel, V.I. (2020), "Analysis of uniaxially loaded short roundended concrete-filled steel tubular beam-columns", Eng. Struct., 205 110098. https://doi.org/10.1016/j.engstruct.2019.110098.
  55. Rodrigues, J.P.C., Correia, A.J. and Kodur, V. (2021), "Influence of cross-section type and boundary conditions on structural behavior of concrete-filled steel tubular columns subjected to fire", J. Struct. Eng., 147(1), 04020289. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002860.
  56. Romero, M.L., Espinos, A., Lapuebla-Ferri, A., Albero, V. and Hospitaler, A. (2020), "Recent developments and fire design provisions for CFST columns and slim-floor beams", J. Construct. Steel Res., 172 106159. https://doi.org/10.1016/j.jcsr.2020.106159
  57. Seghier, M.E.A.B., Gao, X.-Z., Jafari-Asl, J., Thai, D.-K., Ohadi, S. and Trung, N.-T. (2021), "Modeling the nonlinear behavior of ACC for SCFST columns using experimental-data and a novel evolutionary-algorithm", Structures. 30 692-709. https://doi.org/10.1016/j.istruc.2021.01.036.
  58. Shahmansouri, A.A., Akbarzadeh Bengar, H. and Jafari, A. (2020), "Modeling the lateral behavior of concrete rocking walls using multi-objective neural network", J. Concrete Struct. Mater., 5(2), 110-128. https://doi.org/10.30478/jcsm.2021.272480.1192.
  59. Solhmirzaei, R., Salehi, H., Kodur, V. and Naser, M.Z. (2020), "Machine learning framework for predicting failure mode and shear capacity of ultra high performance concrete beams", Eng. Struct., 224 111221. https://doi.org/10.1016/j.engstruct.2020.111221.
  60. Tam, V.W., Wang, Z.-B. and Tao, Z. (2014), "Behaviour of recycled aggregate concrete filled stainless steel stub columns", Mater. Struct., 47(1), 293-310. https://doi.org/10.1617/s11527-013-0061-1.
  61. Tam, V.W.Y., Tao, Z. and Evangelista, A. (2021), "Performance of recycled aggregate concrete filled steel tubular (RACFST) stub columns with expansive agent", Construct. Build. Mater., 272, 121627. https://doi.org/1010.1016/j.conbuildmat.2020.121627.
  62. Tang, Y.-C., Li, L.-J., Feng, W.-X., Liu, F. and Liao, B. (2017), "Seismic performance of recycled aggregate concrete-filled steel tube columns", J. Construct. Steel Res., 133 112-124. https://doi.org/101010.1016/j.jcsr.2017.02.006.
  63. Tang, Y.-C., Li, L.-J., Feng, W.-X., Liu, F. and Zhu, M. (2018), "Study of seismic behavior of recycled aggregate concrete-filled steel tubular columns", J. Construct. Steel Res., 148, 1-15. https://doi.org/10.1016/j.jcsr.2018.04.031.
  64. Thanh Duong, H., Chi Phan, H., Le, T.-T. and Duc Bui, N. (2020), "Optimization design of rectangular concrete-filled steel tube short columns with Balancing Composite Motion Optimization and data-driven model", Structures. 28, 757-765. https://doi.org/10.1016/j.istruc.2020.09.013.
  65. Tran, V.-L., Jang, Y. and Kim, S.-E. (2021), "Improving the axial compression capacity prediction of elliptical CFST columns using a hybrid ANN-IP model", Steel Compos. Struct., 39(3), 319-335. https://doi.org/10.12989/scs.2021.39.3.319.
  66. Tran, V.-L., Thai, D.-K. and Kim, S.-E. (2019), "A new empirical formula for prediction of the axial compression capacity of CCFT columns", Steel Compos. Struct., 33(2), 181-194. https://doi.org/10.12989/scs.2019.33.2.181.
  67. Ukanwa, K.U., Clifton, G.C., Lim, J.B.P., Hicks, S.J., Sharma, U. and Abu, A. (2018), "Design of a continuous concrete filled steel tubular column in fire", Thin-Wall. Struct., 131, 192-204. https://doi.org/10.1016/j.tws.2018.07.001.
  68. Wang, Y., Chen, J. and Geng, Y. (2015), "Testing and analysis of axially loaded normal-strength recycled aggregate concrete filled steel tubular stub columns", Eng. Struct., 86, 192-212. https://doi.org/10.1016/j.engstruct.2015.01.007.
  69. Wang, Y., Chen, P., Liu, C. and Zhang, Y. (2017), "Size effect of circular concrete-filled steel tubular short columns subjected to axial compression", Thin-Wall. Struct., 120 397-407. https://doi.org/10.1016/j.tws.2017.09.010.
  70. Wang, Z.-B., Tao, Z., Han, L.-H., Uy, B., Lam, D. and Kang, W.-H. (2017), "Strength, stiffness and ductility of concrete-filled steel columns under axial compression", Eng. Struct., 135 209-221. https://doi.org/10.1016/j.engstruct.2016.12.049.
  71. Xiao, J., Wang, C., Ding, T. and Akbarnezhad, A. (2018), "A recycled aggregate concrete high-rise building: Structural performance and embodied carbon footprint", J. Cleaner Product., 199 868-881. https://doi.org/10.1016/j.jclepro.2018.07.210.
  72. Xu, J., Wang, Y., Ren, R., Wu, Z. and Ozbakkaloglu, T. (2020), "Performance evaluation of recycled aggregate concrete-filled steel tubes under different loading conditions: Database analysis and modelling", J. Build. Eng., 30 101308. https://doi.org/10.1016/j.jobe.2020.101308.
  73. Xu, J., Zhao, X., Chen, Z., Liu, J., Xue, J. and Elchalakani, M. (2019), "Novel prediction models for composite elastic modulus of circular recycled aggregate concrete-filled steel tubes", ThinWall. Struct., 144 106317. https://doi.org/10.1016/j.tws.2019.106317.
  74. Yang, L., Xie, W., Zhao, Y. and Zheng, J. (2020), "Linear elastic iteration technique for ultimate bearing capacity of circular CFST arches", J. Construct. Steel Res., 172 106135. https://doi.org/10.1016/j.jcsr.2020.106135.
  75. Yang, Y.-F., Cao, K. and Wang, T.-Z. (2013), "Experimental behavior of CFST stub columns after being exposed to freezing and thawing", Cold Regions Sci. Technol., 89, 7-21. https://doi.org/10.1016/j.coldregions.2013.01.005.
  76. Yang, Y.-F. and Hou, C. (2015), "Behaviour and design calculations of recycled aggregate concrete-filled steel tube (RACFST) members", Mag. Concrete Res., 67(11), 611-620. https://doi.org/10.1680/macr.14.00204
  77. Yang, Y.-F. and Ma, G.-L. (2013), "Experimental behaviour of recycled aggregate concrete filled stainless steel tube stub columns and beams", Thin-Wall. Struct., 66 62-75. https://doi.org/10.1680/macr.14.00204
  78. Yang, Y. and Han, L. (2006), "Compressive and flexural behaviour of recycled aggregate concrete filled steel tubes (RACFST) under short-term loadings", Steel Compos. Struct., 6(3), 257. https://doi.org/10.12989/scs.2006.6.3.257.
  79. Yang, Y. and Hou, R. (2012), "Experimental behaviour of RACFST stub columns after exposed to high temperatures", Thin-Wall. Struct., 59 1-10. https://doi.org/10.1016/j.tws.2012.04.017.
  80. Younas, S., Hamed, E. and Uy, B. (2021), "Behaviour of high strength concrete-filled short steel tubes under sustained loading", Steel Compos. Struct., 39(2), 159-170. https://doi.org/10.12989/scs.2021.39.2.159.
  81. Yu, Z.-W., Ding, F.-X. and Cai, C. (2007), "Experimental behavior of circular concrete-filled steel tube stub columns", J. Construct. Steel Res., 63(2), 165-174. https://doi.org/10.1016/j.jcsr.2006.03.009.
  82. Zarringol, M., Thai, H.-T. and Naser, M.Z. (2021), "Application of machine learning models for designing CFCFST columns", J. Construct. Steel Res., 185 106856. https://doi.org/10.1007/s10462-020-09894-7.
  83. Zarringol, M., Thai, H.-T., Thai, S. and Patel, V. (2020), "Application of ANN to the design of CFST columns", Structures. 28 2203-2220. https://doi.org/10.1016/j.istruc.2020.10.048.
  84. Zhang, Q., Barri, K., Jiao, P., Salehi, H. and Alavi, A.H. (2021), "Genetic programming in civil engineering: advent, applications and future trends", Artific. Intell. Rev., 54(3), 1863-1885. https://doi.org/10.1007/s10462-020-09894-7.
  85. Zhu, J.-Y. and Chan, T.-M. (2018), "Experimental investigation on octagonal concrete filled steel stub columns under uniaxial compression", J. Construct. Steel Res., 147 457-467. https://doi.org/10.1016/j.jcsr.2018.04.030.