Acknowledgement
This work was supported by 2022 Hongik University Research Fund. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020R1A2C1100924).
References
- Akhavan, H., Hosseini Hashemi, S.H., Damavandi Taher, H.R., Alibeigloo, A. and Vahabi, Sh. (2009), "Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part I: Buckling analysis", Comput. Mater. Sci., 44(3), 968-978. https://doi.org/10.1007/s10443-009-9100-z.
- Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A. and Mahmoud, S.R. (2017), "An efficient and simple four variable refined theory for buckling analysis of functionally graded plates", Steel Compos. Struct., 25(3), 257-270. https://doi.org/ 10.12989/scs.2017.25.3.257.
- Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev., 60(5), 195-216, https://doi.org/10.1115/1.2777164.
- Chinesta, F., Cescotto, C., Cueto, E. and Lorong, P. (2013), Natural Element Method for the Simulation of Structures and Processes, Wiley, NJ, USA.
- Cho, J.R. (2020), "Natural element approximation of hierarchical models of plate-like elastic structures", Finite. Elem. Anal. Des., 180, 103439. https://doi.org/10.1016/j.finel.2020.103439.
- Cho, J.R. and Ha, D.Y. (2001), "Averaging and finite-element discretization approaches in the numerical analysis of functionally graded materials", Mater. Sci. Eng. A, 302, 187-196. https://doi.org/10.1016/S0921-5093(00)01835-9.
- Cho, J.R. and Ha, D.Y. (2002), "Volume fraction optimization for minimizing thermal stress in Ni-Al2O3 functionally graded materials", Mater. Sci. Eng. A, 334, 147-155, https://doi.org/10.1016/S0921-5093(01)01791-9.
- Cho, J.R. and Oden, J.T. (2000), "Functionally graded material: a Parametric study on thermal stress characteristics using the Crank-Nicolson-Galerkin scheme", Computer Method. Appl. Mech. Engrg., 188, 17-38. https://doi.org/10.1016/S0045-7825(99)00289-3.
- Dolbow, J.E. and Gosz, M. (2002), "On the computation of mixedmode stress intensity factors in functionally graded materials", Int. J. Solids Struct., 39(9), 2557-2574. https://doi.org/10.1016/S0020-7683(02)00114-2.
- Ebrahimi, F. and Rastgo, A. (2008), "An analytical study on the free vibration of smart circular thin FG plate based on classical plate theory", Thin-Walled Struct., 66(12), 1402-1408. https://doi.org/10.1016/j.tws.2008.03.008.
- Feldman, E. and Aboudi, J. (1997), "Buckling analysis of functionally graded plates subjected to uniaxial loading", Compos. Struct., 38(1-4), 29-36. https://doi.org/10.1016/S0263-8223(97)00038-X.
- Han, X. and Liu, G.R. (2003), "Computational inverse technique for material characterization of functionally grade materials", AIAA J., 41(2), 288-295. https://doi.org/10.2514/2.1942.
- Hassan, A.H.A. and Kurgan, N. (2019), "A review on buckling analysis of functionally graded plates under thermo-mechanical loads", Int. J. Eng. Appl. Sci., 11(1), 345-368, https://doi.org/10.24107/ijeas.555719.
- Kieback, B., Neubrand, A. and Riedel, H. (2003), "Processing techniques for functionally graded materials", Mater. Sci. Eng. A, 362(1-2), 81-106. https://doi.org/10.1016/S0921-5093(03)00578-1.
- Kim, J.H. and Paulino, G.H. (2002), "Finite element evaluation of mixed mode stress intensity factors in functionally graded materials", Int. J. Numer. Methods Engng., 53, 1903-1935. https://doi.org/10.1002/nme.364.
- Kim, J. and Reddy, J.N. (2013), "Analytical solutions for bending, vibration, and buckling id FG plates using a couple stress-based third-order theory", Compos. Struct., 103, 86-98. https://doi.org/10.1016/j.compstruct.2013.03.007.
- Kulkarni, K., Singh, B.N. and Maiti, D.K. (2015), "Analytical solution for bending and buckling analysis of functionally graded plates using inverse trigonometric shear deformation theory", Compos. Struct., 134, 147-157. https://doi.org/10.1016/j.compstruct.2015.08.060.
- Lipton, R. (2002), "Design of functionally graded composite structure in the presence of stress constraints", Int. J. Solids Struct., 39(9), 2575-2586. https://doi.org/10.1016/S0020-7683(02)00129-4.
- Loh, G.H., Pei, E., Harrison, D. and Monzon, M.D. (2018), "An overview of functionally graded additive manufacturing", Additive Manufac., 23, 34-44. https://doi.org/10.1016/j.addma.2018.06.023.
- Loy, C.T., Lam, K.Y. and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41(3), 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X.
- Mahamood, R.M. and Akinlabi, E.T. (2017), Functionally Graded Materials, Springer, Berlin, Germany.
- Miyamoto, Y., Kaysser, W.A., Rabin, B.H. and Kawasaki, A. (2013), Functionally Graded Materials: Design. Processing and Applications, Springer Science and Business Media, New York, USA.
- Mohammadi, M., Saidi, A.R. and Jomehzadeh, E. (2009), "Levy solution for buckling analysis of functionally graded rectangular plates", Appl. Comp. Mater., 17, 81-93. https://doi.org/10.1007/s10443-009-9100-z.
- Nie, G.J., Zhong, Z. and Batra, R.C. (2018), "Material tailoring for reducing stress concentration factor at a circular hole in a functionally graded materials (FGM) panel", Compos. Struct., 205, 49-57, https://doi.org/10.1016/j.compstruct.2018.08.078.
- Noda, N. (1999), "Thermal residual stresses in functionally graded materials", J. Therm. Stress., 22, 477-512. https://doi.org/10.1016/ 0921-5093(95)09773-2.
- Ravichandran, K.S. (1995), "Thermal residual stresses in a functionally graded material system", Mater. Sci. Eng. A, 201, 269-276, https://doi.org/10.1016/0921-5093(95)09773-2.
- Reiter, T., Dvorak, G.J. and Tvergaard, V. (1997), "Micromechanical models for graded composite materials", J. Phys. Solids, 45, 1281-1302. https://doi.org/10.1016/S0022-5096(97)00007-0.
- Sukumar, N., Moran, A. and Belytschko, T. (1998), "The natural element method in solid mechanics", Int. J. Numer. Methods Engng., 43, 839-887. https://doi.org/10.1002/(SICI)1097-0207(19981115)43:5<839::AID-NME423>3.0.CO;2-R.
- Swaminathan, K., Naveenkumar, D.T., Zenkour, A.M. and Carrera, E. (2015), "Stress, vibration and buckling analyses of FGM plates - A state-of-the-art review", Compos. Struct., 120, 10-31. https://doi.org/10.1016/j.compstruct.2014.09.070.
- Thai, H.T. and Choi, D.H. (2012), "An efficient and simple refined theory for buckling analysis of functionally graded plates", Appl. Math. Modell., 36(3), 1008-1022. https://doi.org/10.1016/j.apm.2011.07.062.
- Thai, H.T. and Kim, S.E. (2013), "Closed-form solution for buckling analysis of thick functionally graded plates on elastic foundation", Int. J. Mech. Sci., 75, 34-44. https://doi.org/10.1016/j.ijmecsci.2013.06.007
- Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Mechanical and thermal buckling analysis of functionally graded plates", Compos. Struct., 90(2), 161-171. https://doi.org/10.1016/j.compstruct.2009.03.005.
- Zienkiewicz, O.C., Taylor, R.L. and Too, J.M. (1971), "Reduced integration technique in general analysis of plates and shells", Int. J. Numer. Methods Engng., 3(2), 275-290. https://doi.org/10.1002/nme.1620030211.