Acknowledgement
This work was supported by the National Research Foundation of Korea grant funded by the Korea government (No. NRF-2021R1A2C2003538).
References
- J. Yao, and L. V. Wang, "Photoacoustic microscopy," Laser Photon. Rev. 7, 758-778 (2013). https://doi.org/10.1002/lpor.201200060
- K. Maslov, H. F. Zhang, S. Hu, and L. V Wang, "Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries," Opt. Lett. 33, 929-931 (2008). https://doi.org/10.1364/OL.33.000929
- J. Yao, L.i Wang, J.-M. Yang, K. I. Maslov, T. T. W Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, "High-speed label-free functional photoacoustic microscopy of mouse brain in action," Nat. Methods, 12, 407-410 (2015). https://doi.org/10.1038/nmeth.3336
- Q. Chen, T. Jin, W. Qi, X. Mo, and L. Xi, "Label-free photoacoustic imaging of the cardio-cerebrovascular development in the embryonic zebrafish," Biomed. Opt. Express, 8, 2359 (2017). https://doi.org/10.1364/BOE.8.002359
- J. Kang, E.-K. Kim, J. Y. Kwak, Y. Yoo, T.-K. Song, and J. H. Chang, "Optimal laser wavelength for photoacoustic imaging of breast microcalcifications," Appl. Phys. Lett. 99, 153702 (2011). https://doi.org/10.1063/1.3651333
- H. Kim, H. Lee, H. Moon, J. Kang, Y. Jang, D. Kim, J. Kim, E. Huynh, G. Zheng, H. Kim, and J. H. Chang, "Resonance-based frequency-selective amplification for increased photoacoustic imaging sensitivity," ACS Photonics, 6, 2268-2276 (2019). https://doi.org/10.1021/acsphotonics.9b00576
- R. Manwar, M. Zafar, and Q. Xu, "Signal and Image processing in biomedical photoacoustic imaging: a review," Optics, 2, 1-24 (2020). https://doi.org/10.3390/opt2010001
- J. Yao and L. V Wang, "Sensitivity of photoacoustic microscopy," Photoacoustics, 2, 87-101 (2014). https://doi.org/10.1016/j.pacs.2014.04.002
- H. Kim, H. Lee, H. Kim, and J. H. Chang, "Elimination of nontargeted photoac oustic signals for c ombined photoacoustic and ultrasound imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 68, 1593-1604 (2021). https://doi.org/10.1109/TUFFC.2020.3041634
- H. N. Y. Nguyen, A. Hussain, and W. Steenbergen, "Reflection artifact identification in photoacoustic imaging using multi-wavelength excitation," Biomed. Opt. Express, 9, 4613 (2018). https://doi.org/10.1364/boe.9.004613
- J. Kang, J. H. Chang, S. M. Kim, H. J. Lee, H. Kim, B. C. Wilson, and T.-K. Song, "Real-time sentinel lymph node biopsy guidance using combined ultrasound, photoacoustic, fluorescence imaging: in vivo proofof-principle and validation with nodal obstruction," Sci. Rep. 7, 45008 (2017). https://doi.org/10.1038/srep45008
- J. Jang and J. H. Chang, "Design and fabrication of a miniaturized convex array for combined ultrasound and photoacoustic imaging of the prostate," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 65, 2086-2096 (2018). https://doi.org/10.1109/tuffc.2018.2864664
- J. Jang, J. Kim, H. J. Lee, and J. H. Chang, "Transrectal ultrasound and photoacoustic imaging probe for diagnosis of prostate cancer," Sensors, 21, 1217 (2021). https://doi.org/10.3390/s21041217
- A. Cebrecos, J. J. Garcia-Garrigos, A. Descals, N. Jimenez, J. M. Benlloch, and F. Camarena, "Beamforming for large-area scan and improved SNR in array-based photoacoustic microscopy," Ultrasonics, 111, 106317 (2021). https://doi.org/10.1016/j.ultras.2020.106317
- D. Kim, W. Han, J. H. Chang, and H. J. Lee, "PMP (Porphyrin-Micelle-PSMA) nanoparticles for photoacoustic and ultrasound signal amplification in mouse prostate cancer xenografts," Pharmaceutics, 13, 1636 (2021). https://doi.org/10.3390/pharmaceutics13101636
- K. J. Francis, B. Chinni, S. S. Channappayya, R. Pachamuthu, V. S. Dogra, and N. Rao, "Characterization of lens based photoacoustic imaging system," Photoacoustics, 8, 37-47 (2017). https://doi.org/10.1016/j.pacs.2017.09.003
- S. Park, S. Kang, and J. H. Chang, "Optically transparent focused transducers for combined photoacoustic and ultrasound microscopy," J. Med. Biol. Eng. 40, 707-718 (2020). https://doi.org/10.1007/s40846-020-00536-5
- J. Park, B. Park, T. Y. Kim, S. Jung, W. J. Choi, J. Ahn, D. H. Yoon, J. Kim, S. Jeon, D. Lee, U. Yong, J. Jang, W. J. Kim, H. K. Kim, U. Jeong, H. H. Kim, and C. Kim, "Quadruple ultrasound, photoacoustic, optical coherence, and fluorescence fusion imaging with a transparent ultrasound transducer," Proc. Natl. Acad. Sci. 118, e1920879118 (2021). https://doi.org/10.1073/pnas.1920879118
- H. Chen, S. Agrawal, A. Dangi, C. Wible, M. Osman, L. Abune, H. Jia, R. Rossi, Y. Wang, and S.-R. Kothapalli, "Optical-resolution photoacoustic microscopy using transparent ultrasound transducer," Sensors, 19, 5470 (2019).
- C. Fang and J. Zou, "Acoustic-resolution photoacoustic microscopy based on an optically transparent focused transducer with a high numerical aperture," Opt. Lett. 46, 3280 (2021). https://doi.org/10.1364/OL.423287
- R. Chen, Y. He, J. Shi, C. Yung, J. Hwang, L. V. Wang, and Q. Zhou, "Transparent high-frequency ultrasonic transducer for photoacoustic microscopy application," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 67, 1848-1853 (2020). https://doi.org/10.1109/tuffc.2020.2985369
- J. Y. Moon, J. Lee, and J. H. Chang, "Electrical impedance matching networks based on filter structures for high frequency ultrasound transducers," Sensors Actuators, A Phys. 251, 225-233 (2016). https://doi.org/10.1016/j.sna.2016.10.025
- V. T. Rathod, "A review of electric impedance matching techniques for piezoelectric sensors, actuators and transducers," Electronics, 8, 169 (2019). https://doi.org/10.3390/electronics8020169
- W. Xing, L. Wang, K. Maslov, and L. V Wang, "Integrated optical- and acoustic-resolution photoacoustic microscopy based on an optical fiber bundle," Opt. Lett. 38, 52 (2013). https://doi.org/10.1364/OL.38.000052
- K. M. Kempski, M. T. Graham, M. R. Gubbi, T. Palmer, and M. A. Lediju Bell, "Application of the generalized contrast-to-noise ratio to assess photoacoustic image quality," Biomed. Opt. Express, 11, 3684 (2020). https://doi.org/10.1364/boe.391026
- W. Han, Development of a low-noise wideband signal receiver for combined PA and US imaging, (M.S. thesis, DGIST, 2021).
- M. W. Schellenberg and H. K. Hunt, "Hand-held optoacoustic imaging: A review," Photoacoustics, 11, 14-27 (2018). https://doi.org/10.1016/j.pacs.2018.07.001
- J.-Y. Moon, J. Lee, and J. H. Chang, "Implementation of low-noise, wideband ultrasound receiver for highfrequency ultrasound imaging" (in Korean), J. Acoust. Soc. Kr. 36, 238-246 (2017).
- J. H. Chang, L. Sun, J. T. Yen, and K. K. Shung, "Low-cost, high-speed back-end processing system for high-frequency ultrasound B-mode imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 56, 1490-1497 (2009). https://doi.org/10.1109/TUFFC.2009.1205
- K. Kurokawa, "Design theory of balanced transistor amplifiers," Bell Syst. Tech. J. 44, 1675-1698 (1965). https://doi.org/10.1002/j.1538-7305.1965.tb04198.x
- H. Kim, G. Jo, and J. H. Chang, "Ultrasound-assisted photothermal therapy and real-time treatment monitoring," Biomed. Opt. Express, 9, 4472-4480 (2018). https://doi.org/10.1364/BOE.9.004472
- J. Kim, H. Kim, and J. H. Chang, "Endoscopic probe for ultrasound-assisted photodynamic therapy of deeplying tissue," IEEE Access, 8, 179745-179753 (2020). https://doi.org/10.1109/access.2020.3026372
- J. Lee, J. Jang, and J. H. Chang, "Oblong-shapedfocused transducers for intravascular ultrasound imaging," IEEE Trans. Biomed. Eng. 64, 671-680 (2017). https://doi.org/10.1109/TBME.2016.2572182
- C. Yoon, J. Kang, T. Song, and J. H. Chang, "Elevational synthetic aperture focusing for three-dimensional photoacoustic imaging using a clinical one-dimensional array transducer," IEEE Trans. Biomed. Eng. 69, 2817-2825 (2022). https://doi.org/10.1109/TBME.2022.3154754
- J. Lee and J. H. Chang, "Dual-element intravascular ultrasound transducer for tissue harmonic imaging and frequency compounding: development and imaging performance assessment," IEEE Trans. Biomed. Eng. 66, 3146-3155 (2019). https://doi.org/10.1109/tbme.2019.2901005