DOI QR코드

DOI QR Code

A low noise, wideband signal receiver for photoacoustic microscopy

광음향 현미경 영상을 위한 저잡음 광대역 수신 시스템

  • Han, Wonkook (Department of Electrical Engineering and Computer Science, DGIST) ;
  • Moon, Ju-Young (PIE Co., Ltd.) ;
  • Park, Sunghun (Department of Electronic Engineering, Sogang University) ;
  • Chang, Jin Ho (Department of Electrical Engineering and Computer Science, DGIST)
  • Received : 2022.07.20
  • Accepted : 2022.09.22
  • Published : 2022.09.30

Abstract

The PhotoAcoustic Microscopy (PAM) has been proved to be a useful tool for biological and medical applications due to its high spatial and contrast resolution. PAM is based on transmission of laser pulses and reception of PA signals. Since the strength of PA signals is generally low, not only are high-performance optical and acoustic modules required, but high-performance electronics for imaging are also particularly needed for high-quality PAM imaging. Most PAM systems are implemented with a combination of several pieces of equipment commercially available to receive, amplify, enhance, and digitize PA signals. To this end, PAM systems are inevitably bulky and not optimal because general purpose equipment is used. This paper reports a PA signal receiving system recently developed to attain the capability of improved Signal to Noise Ratio (SNR) and Contrast to Noise Ratio (CNR) of PAM images; the main module of this system is a low noise, wideband signal receiver that consists of two low-noise amplifiers, two variable gain amplifiers, analog filters, an Analog to Digital Converter (ADC), and control logic. From phantom imaging experiments, it was found that the developed system can improve SNR by 6.7 dB and CNR by 3 dB, compared to a combination of several pieces of commercially available equipment.

광음향 현미경은 높은 공간 해상도와 높은 대조도를 갖는 영상을 제공할 수 있어 생명과학 연구와 의료응용에 있어 유용하다. 광음향 현미경은 레이저 펄스 송신 후 생체조직에서 발생하는 광음향 신호를 수신하여 영상을 구성한다. 일반적으로 광음향 신호의 크기는 작기 때문에, 고품질의 광음향 현미경 영상을 얻기 위해서는 고성능의 광학 및 음향 모듈과 더불어 신호 수신용 고성능 시스템이 필요하다. 그러나 대부분의 광음향 현미경 시스템은 광음향 신호의 수신, 증폭, 품질향상, 디지털화를 위해 여러 상용 장비의 조합으로 구성된다. 이러한 이유로 광음향 현미경은 부피가 클 수밖에 없으며, 최적의 성능을 제공하기 어렵다. 본 논문에서는 향상된 신호 대 잡음비와 대조도를 제공할 수 있는 광음향 수신 시스템의 구조를 제안하고 성능 평가 결과를 제시한다. 개발한 저잡음 광대역 광음향 신호 수신 시스템은 두개의 저잡음 증폭기, 두 개의 가변 이득 증폭기, 아날로그 필터, 아날로그 디지털 변환기, 그리고 디지털 제어 로직으로 구성되어 있다. 개발된 시스템의 영상 성능은 생체 모사 혈관 팬텀, 와이어 타겟 팬텀 영상 실험을 통하여 상용 신호수신 시스템의 성능과 비교하여 평가하였다. 영상 비교 실험을 통해 개발한 광음향 현미경 시스템이 상용 장비 보다 신호 대 잡음비는 6.7 dB 이상 높았고, 영상의 대조도는 3 dB 이상 높다는 것을 확인하였다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea grant funded by the Korea government (No. NRF-2021R1A2C2003538).

References

  1. J. Yao, and L. V. Wang, "Photoacoustic microscopy," Laser Photon. Rev. 7, 758-778 (2013). https://doi.org/10.1002/lpor.201200060
  2. K. Maslov, H. F. Zhang, S. Hu, and L. V Wang, "Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries," Opt. Lett. 33, 929-931 (2008). https://doi.org/10.1364/OL.33.000929
  3. J. Yao, L.i Wang, J.-M. Yang, K. I. Maslov, T. T. W Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, "High-speed label-free functional photoacoustic microscopy of mouse brain in action," Nat. Methods, 12, 407-410 (2015). https://doi.org/10.1038/nmeth.3336
  4. Q. Chen, T. Jin, W. Qi, X. Mo, and L. Xi, "Label-free photoacoustic imaging of the cardio-cerebrovascular development in the embryonic zebrafish," Biomed. Opt. Express, 8, 2359 (2017). https://doi.org/10.1364/BOE.8.002359
  5. J. Kang, E.-K. Kim, J. Y. Kwak, Y. Yoo, T.-K. Song, and J. H. Chang, "Optimal laser wavelength for photoacoustic imaging of breast microcalcifications," Appl. Phys. Lett. 99, 153702 (2011). https://doi.org/10.1063/1.3651333
  6. H. Kim, H. Lee, H. Moon, J. Kang, Y. Jang, D. Kim, J. Kim, E. Huynh, G. Zheng, H. Kim, and J. H. Chang, "Resonance-based frequency-selective amplification for increased photoacoustic imaging sensitivity," ACS Photonics, 6, 2268-2276 (2019). https://doi.org/10.1021/acsphotonics.9b00576
  7. R. Manwar, M. Zafar, and Q. Xu, "Signal and Image processing in biomedical photoacoustic imaging: a review," Optics, 2, 1-24 (2020). https://doi.org/10.3390/opt2010001
  8. J. Yao and L. V Wang, "Sensitivity of photoacoustic microscopy," Photoacoustics, 2, 87-101 (2014). https://doi.org/10.1016/j.pacs.2014.04.002
  9. H. Kim, H. Lee, H. Kim, and J. H. Chang, "Elimination of nontargeted photoac oustic signals for c ombined photoacoustic and ultrasound imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 68, 1593-1604 (2021). https://doi.org/10.1109/TUFFC.2020.3041634
  10. H. N. Y. Nguyen, A. Hussain, and W. Steenbergen, "Reflection artifact identification in photoacoustic imaging using multi-wavelength excitation," Biomed. Opt. Express, 9, 4613 (2018). https://doi.org/10.1364/boe.9.004613
  11. J. Kang, J. H. Chang, S. M. Kim, H. J. Lee, H. Kim, B. C. Wilson, and T.-K. Song, "Real-time sentinel lymph node biopsy guidance using combined ultrasound, photoacoustic, fluorescence imaging: in vivo proofof-principle and validation with nodal obstruction," Sci. Rep. 7, 45008 (2017). https://doi.org/10.1038/srep45008
  12. J. Jang and J. H. Chang, "Design and fabrication of a miniaturized convex array for combined ultrasound and photoacoustic imaging of the prostate," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 65, 2086-2096 (2018). https://doi.org/10.1109/tuffc.2018.2864664
  13. J. Jang, J. Kim, H. J. Lee, and J. H. Chang, "Transrectal ultrasound and photoacoustic imaging probe for diagnosis of prostate cancer," Sensors, 21, 1217 (2021). https://doi.org/10.3390/s21041217
  14. A. Cebrecos, J. J. Garcia-Garrigos, A. Descals, N. Jimenez, J. M. Benlloch, and F. Camarena, "Beamforming for large-area scan and improved SNR in array-based photoacoustic microscopy," Ultrasonics, 111, 106317 (2021). https://doi.org/10.1016/j.ultras.2020.106317
  15. D. Kim, W. Han, J. H. Chang, and H. J. Lee, "PMP (Porphyrin-Micelle-PSMA) nanoparticles for photoacoustic and ultrasound signal amplification in mouse prostate cancer xenografts," Pharmaceutics, 13, 1636 (2021). https://doi.org/10.3390/pharmaceutics13101636
  16. K. J. Francis, B. Chinni, S. S. Channappayya, R. Pachamuthu, V. S. Dogra, and N. Rao, "Characterization of lens based photoacoustic imaging system," Photoacoustics, 8, 37-47 (2017). https://doi.org/10.1016/j.pacs.2017.09.003
  17. S. Park, S. Kang, and J. H. Chang, "Optically transparent focused transducers for combined photoacoustic and ultrasound microscopy," J. Med. Biol. Eng. 40, 707-718 (2020). https://doi.org/10.1007/s40846-020-00536-5
  18. J. Park, B. Park, T. Y. Kim, S. Jung, W. J. Choi, J. Ahn, D. H. Yoon, J. Kim, S. Jeon, D. Lee, U. Yong, J. Jang, W. J. Kim, H. K. Kim, U. Jeong, H. H. Kim, and C. Kim, "Quadruple ultrasound, photoacoustic, optical coherence, and fluorescence fusion imaging with a transparent ultrasound transducer," Proc. Natl. Acad. Sci. 118, e1920879118 (2021). https://doi.org/10.1073/pnas.1920879118
  19. H. Chen, S. Agrawal, A. Dangi, C. Wible, M. Osman, L. Abune, H. Jia, R. Rossi, Y. Wang, and S.-R. Kothapalli, "Optical-resolution photoacoustic microscopy using transparent ultrasound transducer," Sensors, 19, 5470 (2019).
  20. C. Fang and J. Zou, "Acoustic-resolution photoacoustic microscopy based on an optically transparent focused transducer with a high numerical aperture," Opt. Lett. 46, 3280 (2021). https://doi.org/10.1364/OL.423287
  21. R. Chen, Y. He, J. Shi, C. Yung, J. Hwang, L. V. Wang, and Q. Zhou, "Transparent high-frequency ultrasonic transducer for photoacoustic microscopy application," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 67, 1848-1853 (2020). https://doi.org/10.1109/tuffc.2020.2985369
  22. J. Y. Moon, J. Lee, and J. H. Chang, "Electrical impedance matching networks based on filter structures for high frequency ultrasound transducers," Sensors Actuators, A Phys. 251, 225-233 (2016). https://doi.org/10.1016/j.sna.2016.10.025
  23. V. T. Rathod, "A review of electric impedance matching techniques for piezoelectric sensors, actuators and transducers," Electronics, 8, 169 (2019). https://doi.org/10.3390/electronics8020169
  24. W. Xing, L. Wang, K. Maslov, and L. V Wang, "Integrated optical- and acoustic-resolution photoacoustic microscopy based on an optical fiber bundle," Opt. Lett. 38, 52 (2013). https://doi.org/10.1364/OL.38.000052
  25. K. M. Kempski, M. T. Graham, M. R. Gubbi, T. Palmer, and M. A. Lediju Bell, "Application of the generalized contrast-to-noise ratio to assess photoacoustic image quality," Biomed. Opt. Express, 11, 3684 (2020). https://doi.org/10.1364/boe.391026
  26. W. Han, Development of a low-noise wideband signal receiver for combined PA and US imaging, (M.S. thesis, DGIST, 2021).
  27. M. W. Schellenberg and H. K. Hunt, "Hand-held optoacoustic imaging: A review," Photoacoustics, 11, 14-27 (2018). https://doi.org/10.1016/j.pacs.2018.07.001
  28. J.-Y. Moon, J. Lee, and J. H. Chang, "Implementation of low-noise, wideband ultrasound receiver for highfrequency ultrasound imaging" (in Korean), J. Acoust. Soc. Kr. 36, 238-246 (2017).
  29. J. H. Chang, L. Sun, J. T. Yen, and K. K. Shung, "Low-cost, high-speed back-end processing system for high-frequency ultrasound B-mode imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 56, 1490-1497 (2009). https://doi.org/10.1109/TUFFC.2009.1205
  30. K. Kurokawa, "Design theory of balanced transistor amplifiers," Bell Syst. Tech. J. 44, 1675-1698 (1965). https://doi.org/10.1002/j.1538-7305.1965.tb04198.x
  31. H. Kim, G. Jo, and J. H. Chang, "Ultrasound-assisted photothermal therapy and real-time treatment monitoring," Biomed. Opt. Express, 9, 4472-4480 (2018). https://doi.org/10.1364/BOE.9.004472
  32. J. Kim, H. Kim, and J. H. Chang, "Endoscopic probe for ultrasound-assisted photodynamic therapy of deeplying tissue," IEEE Access, 8, 179745-179753 (2020). https://doi.org/10.1109/access.2020.3026372
  33. J. Lee, J. Jang, and J. H. Chang, "Oblong-shapedfocused transducers for intravascular ultrasound imaging," IEEE Trans. Biomed. Eng. 64, 671-680 (2017). https://doi.org/10.1109/TBME.2016.2572182
  34. C. Yoon, J. Kang, T. Song, and J. H. Chang, "Elevational synthetic aperture focusing for three-dimensional photoacoustic imaging using a clinical one-dimensional array transducer," IEEE Trans. Biomed. Eng. 69, 2817-2825 (2022). https://doi.org/10.1109/TBME.2022.3154754
  35. J. Lee and J. H. Chang, "Dual-element intravascular ultrasound transducer for tissue harmonic imaging and frequency compounding: development and imaging performance assessment," IEEE Trans. Biomed. Eng. 66, 3146-3155 (2019). https://doi.org/10.1109/tbme.2019.2901005