과제정보
본 논문은 2018년도 정부(교육부)의 재원으로 한국연구재단의 지원과 2022년도 광운대학교교내 학술연구비 지원에 의해 연구되었음(NRF-2018R1D1A1B07041783).
참고문헌
- H. M. Burke, M. C. Davis, C. Otte, and D. C. Mohr, "Depression and cortisol responses to psychological stress: a meta-analysis," Psychoneuroendocrinology, 30, 846-856 (2005). https://doi.org/10.1016/j.psyneuen.2005.02.010
- N. Sharma and T. Gedeon, "Objective measures, sensors and computational techniques for stress recognition: A survey," Comput. Methods Programs Bio. 108, 1287-1301 (2012). https://doi.org/10.1016/j.cmpb.2012.07.003
- D. Li, L. Xie, B. Chai, Z. Wang, and H. Yang, "Spatialfrequency convolutional self-attention network for EEG emotion recognition," Appl. Soft Comput. 122, 108740 (2022). https://doi.org/10.1016/j.asoc.2022.108740
- S. Issa, Q. Peng, X. You, and W. Ali, "Emotion assessment using EEG brain signals and stacked sparse autoencoder," J. Inf. Assur. Secur. 14, 20-29 (2019).
- Y. Song, X. Jia, L. Yang, and L. Xie, "Transformerbased spatial-temporal feature learning for EEG decoding," arXiv preprint arXiv:2106. 11170 (2021).
- H. J. Eun, "Basics of electroencephalography for neuropsychiatrist" (in Korean), J. Korean Neuropsychiatr Assoc. 58, 76-104 (2019). https://doi.org/10.4306/jknpa.2019.58.2.76
- A. Nguyen, K. Pham, D. Ngo, T. Ngo, and L. Pham, "An analysis of state-of-the-art activation functions for supervised deep neural network," Proc. ICSSE, 215-220 (2021).
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, and A. N. Gomez, "Attention is all you need," Adv. Neural Inf. Process. Syst. 30, 5998-6008 (2017).
- K. Cho, B. Van Merrienboer, D. Bahdanau, and Y. Bengio, "On the properties of neural machine translation: Encoder-decoder approaches," arXiv preprint arXiv:1409.1259 (2014).
- Y. Tao, T. Sun, A. Muhamed, S. Genc, D. Jackson, A. Arsanjani, S. Yaddanapudi, L. Li, and P. Kumar, "Gated trans former for decoding human brain EEG signals," Proc. IEEE EMBC, 125-130 (2021).
- S. Koelstra, C. Muhl, M. Soleymani, J. S. Lee, A. Yazdani, T. Ebrahimi, T. Pun, A. Nijholt, and I. Patras, "DEAP: A database for emotion analysis; Using physiological signals," IEEE Trans. Affective Comput. 3, 18-31 (2012). https://doi.org/10.1109/T-AFFC.2011.15
- M. J. Hasan and J. M. Kim, "A hybrid feature poolbased emotional stress state detection algorithm using EEG signals," Brain Sci. 9, 376 (2019). https://doi.org/10.3390/brainsci9120376
- D. Shon, K. Im, J.H. Park, D. S. Lim, B. Jang, and J. M. Kim, "Emotional stress state detection using genetic algorithm-based feature selection on EEG signals," Int. J. Environ. Res. Public Health, 15, 2461 (2018). https://doi.org/10.3390/ijerph15112461
- A. Martinez-Rodrigo, B. Garcia-Martinez, A. Huerta, and R. Alcaraz, "Detection of negative stress through spectral features of electroencephalographic recordings and a convolutional neural network," Sensors, 21, 3050 (2021). https://doi.org/10.3390/s21093050
- X. Li, D. Song, P. Zhang, G. Yu, Y. Hou, and B. Hu, "Emotion recognition from multi-channel EEG data through convolutional recurrent neural network," Proc. IEEE BIBM, 352-359 (2016).
- J. X. Chen, D. M. Jiang, and Y. N. Zhang, "A hierarchical bidirectional GRU model with attention for EEG-based emotion classification," Access, 7, 118530-18540 (2019). https://doi.org/10.1109/ACCESS.2019.2936817