DOI QR코드

DOI QR Code

Suppression of side lobe and grating lobe in ultrasound medical imaging system

의료용 초음파 영상 시스템에서 부엽과 격자엽의 억제

  • Jeong, Mok Kun (Department of Electronics Engineering, Daejin University)
  • 정목근 (대진대학교 전자공학과)
  • Received : 2022.05.10
  • Accepted : 2022.05.30
  • Published : 2022.09.30

Abstract

We propose an effective method for suppressing both side and grating lobes by applying 2-dimensional Fourier Transform to the received channel data during the receive focusing process of an ultrasound imaging system. When the signal from the image point is focused, the channel signals have the same DC value across the channels. However, even after echoes from outside an imaging point are focused, they are manifested as having different spatial frequencies depending on their incident angles. Therefore, after the receive focusing delay time is applied, 2-D Fourier Transform is performed on the time-channel data to separate the DC component and other frequency components in the spectral domain, and the weighting value is defined using the ratio of the two values. The side lobe and grating lobe were suppressed by multiplying the ultrasound image by a weighting value. Ultrasound images with a frequency of 5 MHz were simulated in a 64-channel linear array. The grating lobe appearing in the ultrasound image was completely removed by applying the proposed method. In addition, the side lobe was reduced and the lateral resolution was greatly increased. Results of computer simulation on a human organ mimicking image show that the proposed method can aid in better lesion diagnosis by increasing the image contrast.

초음파 영상 시스템의 수신 집속 과정에서, 채널 데이터를 2차원 푸리에 변환하여 부엽과 격자엽을 억제하는 방법을 제안하였다. 영상점에서 온 신호를 집속하면 모든 채널의 신호는 같은 위상을 가지는 직류로 나타난다. 그러나 영상점 밖에서 오는 신호를 집속하면 입사각에 따라서 다른 공간 주파수를 가지는 채널 신호로 나타난다. 따라서 집속 후의 채널 신호를 2차원 푸리에변환을 하면 입사각을 가지는 신호를 주파수 영역에서 효과적으로 분리할 수 있다. 수신 집속 지연 시간이 인가된 시간-채널 데이터를 2차원 푸리에변환을 하여 주파수 영역에서 직류 성분과 그 밖의 주파수 성분으로 분리하고, 두 값의 비율을 이용하여 가중치를 정의하였다. 초음파 영상에 가중치를 곱함으로써 부엽과 격자엽을 억제하였다. 64채널 선형 어레이에서 5 MHz의 주파수의 초음파 영상을 계산하였다. 초음파 영상에서 나타나는 격자엽은 제안한 방법을 적용하여 완전히 제거되었다. 또한 부엽이 줄어들어 측방향 해상도가 크게 증가되었다. 인체모사 영상의 시뮬레이션에서 대조도가 증가하여 병변의 진단에 도움을 줄 수 있음을 확인하였다.

Keywords

Acknowledgement

본 논문은 2022 학년도 대진대학교 학술연구비 지원에 의한 것임.

References

  1. A. Macovski, Medical Imaging Systems (Englewood Cliffs, Prentice Hall, 1983), pp. 204-215.
  2. Y. Paul, D. V. M. Barthez, R. Leveille, V. Peter, and D. V. M. Scrivani, "Side lobes and grating lobes artifacts in ultrasound imaging," Veterinary Radiology & Ultrasound, 38, 387-393 (1997). https://doi.org/10.1111/j.1740-8261.1997.tb02104.x
  3. O. T. Von Ramm and S. W. Smith, "Beam steering with linear arrays," IEEE transactions on biomedical engineering, 8, 438-452 (1983).
  4. J. A. Jensen and N. B. Svendsen, "Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 39, 262-267 (1992). https://doi.org/10.1109/58.139123
  5. I. K. Holfort, F. Gran, and J. A. Jensen, "Broadband minimum variance beamforming for ultrasound imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 56, 314-325 (2009). https://doi.org/10.1109/TUFFC.2009.1040
  6. K. Kim, S. Park, J. Kim, S. B. Park, and M. H. Bae, "A fast minimum variance beamforming method using principal component analysis," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 61, 930-945 (2014). https://doi.org/10.1109/TUFFC.2014.2989
  7. F. Vignon and M. R. Burcher, "Capon beamforming in medical ultrasound imaging with focused beams," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 55, 619-628 (2008). https://doi.org/10.1109/TUFFC.2008.686
  8. P. C. Li and M. L. Li, "Adaptive imaging using the generalized coherence factor," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 50, 128-141 (2003). https://doi.org/10.1109/TUFFC.2003.1182117
  9. M. A. Lediju, G. E. Trahey, B. C. Byram, and J. J. Dahl, "Short-lag spatial coherence of backscattered echoes: imaging characteristics," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 58, 1377-1388 (2011). https://doi.org/10.1109/TUFFC.2011.1957
  10. J. F. Synnevag, C. I. Nilsen, and S. Holm, "Speckle statistics in adaptive beamforming," Proc. IEEE Ultrasonics Symposium Conference, 1545-1548 (2007).
  11. S. Bae and T. K. Song, "Methods for grating lobe suppression in ultrasound plane wave imaging," Applied Sciences, 8, 1881 (2018). https://doi.org/10.3390/app8101881
  12. F. J. Pompei and S. C. Wooh, "Phased array element shapes for suppressing grating lobes," J. Acoust. Soc. Am. 111, 2040-2048 (2002). https://doi.org/10.1121/1.1460924
  13. R. S. Shapiro, W. L. Simpson, D. L. Rausch, and H. C. Yeh, "Compound spatial sonography of the thyroid gland: evaluation of freedom from artifacts and of nodule conspicuity," Am. J. Roentgenol. 177, 1195-1198 (2001). https://doi.org/10.2214/ajr.177.5.1771195
  14. R. Entrekin, P. Jackson, J. R. Jago, and B. A. Porter, "Real time spatial compound imaging in breast ultrasound: technology and early clinical experience," Medicamundi, 43, 35-43 (1999).
  15. M. K. Jeong, "A Fourier transform-based sidelobe suppression method in ultrasound imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 47, 759-763 (2000). https://doi.org/10.1109/58.842066
  16. M. K. Jeong and S. J. Kwon, "Estimation of side lobes in ultrasound imaging systems," Biomed Eng. Lett. 5, 229-239 (2015). https://doi.org/10.1007/s13534-015-0194-y
  17. S. J. Kwon and M. K. Jeong, "Estimation and suppression of side lobes in medical ultrasound imaging systems," Biomed Eng. Lett. 7, 31-43 (2017). https://doi.org/10.1007/s13534-016-0002-3
  18. R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-hill, New York, 1986), pp. 267-272.
  19. J. F. Synnevag, A. Austeng, and S. Holm, "Minimum variance adaptive beamforming applied to medical ultrasound imaging," Proc. IEEE Ultrasonics Symposium Conference, 1199-1202 (2005).
  20. M. K. Jeong and S. J. Kwon, "A new method for assessing the performance of signal processing filters in suppressing the side lobe level," Ultrasonography, 40, 289 (2021). https://doi.org/10.14366/usg.20032
  21. J. A. Jensen, Calculation of B-mode Image of Synthetic Kidney, https://field-ii.dk/?examples/kidney_example/kidney_example.html, (Last viewed September 6, 2022).