참고문헌
- Abed, F., AlHamaydeh, M. and Abdalla, S. (2013), "Experimental and numerical investigations of the compressive behavior of concrete filled steel tubes (CFSTs)", J. Constr. Steel Res., 80, 429-439. https://doi.org/10.1016/j.jcsr.2012.10.005.
- ACI-318R (2005), Building code requirements for structural concrete and commentary, American Concrete Institute; Farmington Hills, MI, USA.
- AIJ (2001), Standards for Structural Calculation of Steel Reinforced Concrete Structures, (5th Edition), Architectural Institute of Japan, Tokyo, Japan.
- AISC (2016) Load and Resistance Factor Design Specification, For Structural Steel Buildings, American Institute of Steel Construction; Chicago, USA.
- Alrebeh, S.K. and Ekmekyapar, T. (2019), "Structural behavior of concrete-filled steel tube short columns stiffened by external and internal continuous spirals", Structures, 22, 98-108. https://doi.org/10.1016/j.istruc.2019.07.001.
- AS3600 (2001), Concrete structures, Standards Association of Australia; Sydney, Australia.
- Chang, X., Fu, L., Zhao, H.B. and Zhang, Y.B. (2013), "Behaviors of axially loaded circular concrete-filled steel tube (CFT) stub columns with notch in steel tubes", Thin-Walled Struct., 73, 273-280. https://doi.org/10.1016/j.tws.2013.08.018.
- Chen, S., Zhang, R., Jia, L.J., Wang, J.Y. and Gu, P. (2018), "Structural behavior of UHPC filled steel tube columns under axial loading", Thin-Walled Struct., 130, 550-563. https://doi.org/10.1016/j.tws.2018.06.016.
- D'Aniello, M., Guneyisi, E. M., Landolfo, R. and Mermerdas, K. (2014), "Analytical prediction of available rotation capacity of cold-formed rectangular and square hollow section beams", Thin-Walled Struct., 77, 141-152. https://doi.org/10.1016/j.tws.2013.09.015.
- Ekmekyapar, T. and Al-Eliwi, B.J.M. (2016), "Experimental behaviour of circular concrete filled steel tube columns and design specifications", Thin-Walled Struct., 105, 220-230. http://dx.doi.org/10.1016/j.tws.2016.04.004.
- Elmas, C. (2003), Yapay sinir aglari, 21-39, Seckin Yayincilik, Ankara, Turkey.
- Ergezer, H., Dikmen, M. and Ozdemir, E. (2003), "Yapay sinir aglari ve tanima sistemleri", Pivolka, 2(6), 14-17.
- Ersoy, U., Ozcebe, G. and Tankut, T. (2010), Reinforced concrete, METU press, Ankara, Turkey.
- Eurocode 4 (2004), Design of composite steel and concrete structures - Part 1.1: general rules and rules for buildings; ENV 1994-1-1, British Standard Institution, London, United Kingdom.
- Evirgen, B., Tuncan, A. and Taskin, K. (2014), "Structural behavior of concrete filled steel tubular sections (CFT/CFSt) under axial compression", Thin-Walled Struct., 80, 46-56. http://dx.doi.org/10.1016/j.tws.2014.02.022.
- FIB (2001), Punching of Structural Concrete Slabs, Fib Bulletin 12, Fib, Lausanne, Switzerland. http://doi.org/10.35789/fib.BULL.0012.
- Gao, S., Peng, Z., Guo, L., Fu, F. and Wang, Y. (2020), "Compressive behavior of circular concrete-filled steel tubular columns under freeze-thaw cycles", J. Constr. Steel Res., 166, 105934. https://doi.org/10.1016/j.jcsr.2020.105934.
- Gardner, N.J. and Jacobson, E.R. (1967), "Structural behavior of concrete-filled steel tubes", J. Am. Concr. Inst., 64(7), 404-412.
- Gholizadeh, S., Pirmoz, A. and Attarnejad, R. (2011), "Assessment of load carrying capacity of castellated steel beams by neural networks", J. Constr. Steel Res., 67, 770-779. https://doi.org/10.1016/j.jcsr.2011.01.001.
- Giakoumelis, G. and Lam, D. (2004), "Axial capacity of circular concrete-filled tube columns", J. Constr. Steel Res., 60, 1049-1068. https://doi.org/10.1016/j.jcsr.2003.10.001.
- Goode, C.D. and Narayanan, R. (1997), "Design of concrete filled steel tubes to EC4", concrete filled steel tubes: A comparison of international codes and practices", Seminar of Association for International Cooperation and Research in Steel-Concrete Composite Structures, Innsbruck, September.
- Guneyisi, E.M. and Nour, A.I. (2019), "Axial compression capacity of circular CFST columns transversely strengthened by FRP", Eng. Struct., 191, 417-431. https://doi.org/10.1016/j.engstruct.2019.04.056.
- Guneyisi, E.M., D'Aniello, M., Landolfo, R. and Mermerdas K. (2013), "A novel formulation of the flexural overstrength factor for steel beams", J. Constr. Steel Res., 90, 60-71. https://doi.org/10.1016/j.jcsr.2013.07.022.
- Guneyisi, E.M., Gultekin, A. and Mermerdas, K. (2016), "Ultimate capacity prediction of axially loaded CFST short columns", Int. J. Steel Struct., 16, 99-104. https://doi.org/10.1007/s13296-016-3009-9.
- Gupta, P.K., Sarda, S.M. and Kumar, M.S. (2007), "Experimental and computational study of concrete filled steel tubular columns under axial loads", J. Constr. Steel Res., 63, 182-193. https://doi.org/10.1016/j.jcsr.2006.04.004.
- Han L.H. and Yao, G.H. (2004), "Experimental behaviour of thinwalled hollow structural steel (HSS) columns filled with selfconsolidating concrete (SCC)", Thin-Walled Struct., 42, 1357-1377. https://doi.org/10.1016/j.tws.2004.03.016.
- Han, L.H. and Yao, G.H. (2003), "Behaviour of concrete-filled hollow structural steel (HSS) columns with pre-load on the steel tubes", J. Constr. Steel Res., 59, 1455-1475. https://doi.org/10.1016/S0143-974X(03)00102-0.
- Han, L.H., Yao, G.F. and Zhao, X.L. (2005), "Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC)", J. Constr. Steel Res., 61, 1241-1269. https://doi.org/10.1016/j.jcsr.2005.01.004.
- Haykin, S. (2000), Neural Networks: A Comprehensive Foundation, Mac-Millan College Publications Cooperation, New Jersey, USA.
- He, L., Zhao, Y. and Lin, S. (2018), "Experimental study on axially compressed circular CFST columns with improved confinement effect", J. Constr. Steel Res., 140, 74-81. https://doi.org/10.1016/j.jcsr.2017.10.025.
- Hebb, D.O. (1949), The Organization of Behavior, John Wiley and Sons Inc., New York, USA.
- Ho, J.C.M. and Lai, M.H. (2013), "Behaviour of uni-axially loaded CFST columns confined by tie bars", J. Constr. Steel Res., 83, 37-50. https://doi.org/10.1016/j.jcsr.2012.12.014.
- Ho, J.C.M. and Lai, M.H. (2013), "Behaviour of uni-axially loaded CFST columns connected by tie bars", J. Constr. Steel Res., 83, 37-50. https://doi.org/10.1016/j.jcsr.2012.12.014.
- Hosseini, F., Khaloo, A. and Tajalli, M.A. (2011), "Seismic Performance of Structures with CFST Columns and Steel Beams", Proc. of the Conference: 1st International Conference on Urban Construction in the Vicinity of Active Faults (ICCVAF), Tabriz, December.
- Huang, C.S., Yeh, Y.K., Liu, G.Y., Hu, H.T., Tsai, K.C., Weng, Y.T., Wang, S.H. and Wu, M.H. (2002), "Axial load behavior of stiffened concrete-filled steel columns", J. Struct. Eng. - ASCE, 128(9), 1222-1230. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1222).
- Huang, F., Yu, X., Chen, B. and Li, J. (2016), "Study on preloading reduction of ultimate load of circular concrete-filled steel tubular columns", Thin-Walled Struct., 98, 454-464. http://dx.doi.org/10.1016/j.tws.2015.10.015.
- Huo, J., Huang, G. and Xiao, Y. "Effects of sustained axial load and cooling phase on post-fire behaviour of concrete-filled steel tubular stub columns", J. Constr. Steel Res., 65, 1664-1676. https://doi.org/10.1016/j.jcsr.2009.04.022.
- Ipek, S. and Guneyisi, E.M. (2020), "Nonlinear finite element analysis of double skin composite columns subjected to axial loading", Arch. Civ. Mech. Eng., 20, 9. https://doi.org/10.1007/s43452-020-0012-x.
- Ipek, S. and Guneyisi, E.M. (2021), "Nonlinear analysis of concrete-filled single and double skin steel tubular tapered columns under axial loading", Smart. Struct. Syst., 27(4), 571-592. https://doi.org/10.12989/sss.2021.27.4.571.
- Ipek, S. and Guneyisi, E.M. (2022), "Application of Eurocode 4 design provisions and development of new predictive models for eccentrically loaded CFST elliptical columns", J. Build. Eng., 48, 103945. https://doi.org/10.1016/j.jobe.2021.103945.
- Ipek, S., Erdogan, A. and Guneyisi, E.M. (2021), "Compressive behavior of concrete-filled double skin steel tubular short columns with the elliptical hollow section", J. Build. Eng., 38, 103945. https://doi.org/10.1016/j.jobe.2021.102200.
- Ipek, S., Guneyisi, E.M., Mermerdas, K. and Algin, Z. (2021), "Optimization and modeling of axial strength of concrete-filled double skin steel tubular columns using response surface and neural-network methods", J. Build. Eng., 43, 103128. https://doi.org/10.1016/j.jobe.2021.103128.
- Jegadesh, J.S.S. and Jayalekshmi, S. (2015), "Application of artificial neural network for calculation of axial capacity of circular concrete filled steel tubular columns", Int. J. Earth Sci. Eng., 8(2), 35-42.
- Kalemi, B. (2016), "Numerical modeling and assessment of circular concrete-filled steel tubular members", M.Sc. Dissertation, Istituto Universitario di Studi Superior, Pavia, Italy.
- Kang, H.S., Lim, S.H., Moon, T.S. and Stiemer, S.F. (2005), "Experimental study on the behavior of CFT stub columns filled with PCC subject to concentric compressive loads", Steel Compos. Struct., 5(1), 17-34. https://doi.org/10.12989/scs.2005.5.1.017.
- Kato, B. (1995), "Compressive strength and deformation capacity of concrete-filled tubular stub columns (Strength and rotation capacity of concrete-filled tubular columns, Part 1)", J. Struct. Constr. Eng. - AIJ, 468, 183-191. https://doi.org/10.3130/aijs.60.183.
- Kumari, B. (2018), "Concrete filled steel tubular (CFST) columns in composite structures", J. Electr. Electron. Eng., 13(1), 11-18.
- Lagaros, N.D. and Papadrakakis, M. (2012), "Applied soft computing for optimum design of structures", Struct. Multidiscipl. Optim., 45, 787-799. https://doi.org/10.1007/s00158-011-0741-9.
- Lam, D. and Gardner, L. (2008), "Structural design of stainless steel concrete filled columns", J. Constr. Steel Res., 64, 1275-1282. https://doi.org/10.1016/j.jcsr.2008.04.012.
- Lee, S.H., Uy, B., Kim, S.H., Choi, Y.H. and Choi, S.M. (2011), "Behavior of high-strength circular concrete-filled steel tubular (CFST) column under eccentric loading", J. Constr. Steel Res., 67, 1-13. https://doi.org/10.1016/j.jcsr.2010.07.003.
- Lin, C.Y. (1988), "Axial capacity of concrete infilled cold-formed steel columns", Proceedings of Ninth International Specialty Conference on Cold-Formed Steel Structures, 443-457. St. Louis, Missouri, U.S.A., November.
- Lu, Z.H. and Zhao, Y.G. (2010), "Suggested empirical models for the axial capacity of circular CFT stub column", J. Constr. Steel Res., 66, 850-862. https://doi.org/10.1016/j.jcsr.2009.12.014.
- Luksha, L.K. and Nesterovich, A.P. (1991), "Strength testing of larger-diameter concrete filled steel tubular members", Proceeding of 3rd International Conference on Steel-concrete Composite Structures, 67-70, Fukuoka, September.
- MathWorks. (2018), Help Center for MATLAB; Mathworks Inc.; MA, USA. http://www.mathworks.com/help/.
- Mermerdas, K. and Arbili, M.M. "Explicit formulation of drying and autogenous shrinkage of concretes with binary and ternary blends of silica fume and fly ash", Constr. Build. Mater., 94, 371-379. https://doi.org/10.1016/j.conbuildmat.2015.07.074.
- Mindess, S., Young, J.F. and Darwin, D. (2003), Concrete, (2nd Edition), Prentice Hall, New Jersey, USA.
- Morino, S., Uchikoshi, M. and Yamaguchi, I. (2001), "Concretefilled steel tube column system-its advantages", Steel Struct., 1(1), 33-44. https://doi.org/10.12989/scs.2001.1.1.033
- O'Shea, M.D. and Bridge, R.Q. (1994), "Tests of thin-walled concrete-filled steel tubes", In: Proceedings of Twelfth International Specialty Conference on Cold-Formed Steel Structures, 399-419, St. Louis, Missouri, U.S.A., October.
- O'Shea, M.D., Bridge, R.Q. (2000), "Design of circular thinwalled concrete filled steel tubes", J. Struct. Eng., 126(11), 1295-1303. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1295).
- Ren, Q.X., Zhou, K., Hou, C., Tao, Z. and Han, L.H. (2018), "Dune sand concrete-filled steel tubular (CFST) stub columns under axial compression: Experiments", Thin-Walled Struct., 124, 291-302. https://doi.org/10.1016/j.tws.2017.12.006.
- Roeder, C.W., Lehman, D.E. and Bishop, E. (2010) "Strength and stiffness of circular concrete-filled tubes", J. Struct. Eng., 136(12), 1545-1553. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000263.
- Saisho, M., Abe, T. and Nakaya, K. (1999) "Ultimate bending strength of high-strength concrete filled steel tube column", J. Struct. Constr. Eng. - AIJ, 523(1), 133-140. https://doi.org/10.3130/aijs.64.133_4.
- Sakino, K. and Hayashi, H. (1991), "Behavior of concrete filled steel tubular stub columns under concentric loading", Proceeding of 3rd International Conference on Steel-concrete Composite Structures, 25-30, Fukuoka, September.
- Sakino, K., Nakahara, H., Morino, S. and Nishiyama, I. (2004), "Behavior of centrally loaded concrete-filled steel-tube short columns. J. Struct. Eng. - ASCE, 130(2), 180-188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180).
- Schalkoff, R.J. (1997), Artificial Neural Networks, McGraw-Hill, New York, USA.
- Shakir-Khalil, H. and Zeghiche, J. (1989), "Experimental behaviour of concrete-filled rolled rectangular hollowsection columns", Struct. Eng., 67, 346-353.
- Shanmugam, N.E. and Lakshmi, B. (2001), "State of the art report on steel-concrete composite columns", J. Constr. Steel Res., 57, 1041-1080. https://doi.org/10.1016/S0143-974X(01)00021-9.
- Susac, M. Z., Sarlija, N., Bensic, M. and Tortorelli, S. (2005), "Selecting neural network architecture for investment profitability predictions", J. Inf. Organ. Sci., 29(2), 83-95. https://hrcak.srce.hr/78281.
- Susantha, K.A.S., Ge, H. and Usami, T. (2001), "Uniaxial stressstrain relationship of concrete confined by various shaped steel tubes", Eng. Struct., 23, 1331-1347. https://doi.org/10.1016/S0141-0296(01)00020-7.
- Tan, K. (2006), "Analysis of formulae for calculating loading bearing capacity of steel tubular high strength concrete", J. Southwest Uni. Sci. Tech., 21(2), 7-10.
- Tao, Z., Han, L.H. and Wang, L.L. (2007), "Compressive and flexural behaviour of CFRP-repaired concrete-filled steel tubes after exposure to fire", J. Constr. Steel Res., 63, 1116-1126. https://doi.org/10.1016/j.jcsr.2006.09.007.
- Tran, V.L., Thai, D.K. and Kim, S.E. (2019), "Application of ANN in predicting ACC of SCFST column", Compos. Struct., 228, 111332. https://doi.org/10.1016/j.compstruct.2019.111332.
- Tsuda, K., Matsui, C. and Ishibashi, Y. (1995), "Stability design of slender concrete filled steel tubular columns", Proc. of the Fifth Asia-Pacific Conference on Structural Engineering and Construction (EASEC-5), 439-444.
- Wang, W., Ma, H., Li, Z. and Tang, Z. (2017), "Size effect in circular concrete-filled steel tubes with different diameter-tothickness ratios under axial compression", Eng. Struct., 151, 554-567. http://dx.doi.org/10.1016/j.engstruct.2017.08.022.
- Wang, W.H., Han, L.H., Li, W. and Jia, Y.H. (2014), "Behavior of concrete-filled steel tubular stub columns and beams using dune sand as part of fine aggregate", Constr. Build. Mater., 51, 352-363. http://dx.doi.org/10.1016/j.conbuildmat.2013.10.049.
- Wei, J., Luo, X., Lai, Z. and Varma, A.H. (2020), "Experimental behavior and design of high-strength circular concrete-filled steel tube short columns", J. Struct. Eng., 146(1), 04019184. http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0002474.
- Xiong, M.X., Xiong, D.X. and Liew, J.Y.R. (2017), "Axial performance of short concrete filled steel tubes with high- and ultra-high- strength materials", Eng. Struct., 136, 494-510. http://dx.doi.org/10.1016/j.engstruct.2017.01.037.
- Yamamoto, T., Kawaguchi, J. and Morino, S. "Experimental study of the size effect on the behaviour of concrete filled circular steel tube columns under axial compression", J. Struct. Constr. Eng. - AIJ, 561, 237-244. https://doi.org/10.3130/aijs.67.237_2.
- Yan, J.B., Wan, T. and Dong, X. (2020), "Compressive behaviours of circular concrete-filled steel tubes exposed to lowtemperature environment", Constr. Build. Mater., 245, 118460. https://doi.org/10.1016/j.conbuildmat.2020.118460.
- Yu, Q., Tao, Z. and Wu, Y.X. (2008), "Experimental behaviour of high performance concrete-filled steel tubular column", Thin- Walled Struct., 46, 362-370. https://doi.org/10.1016/j.tws.2007.10.001.
- Yu, Z., Ding, F. and Lin, S. "Researches on behavior of highperformance concrete filled tubular steel short columns", J. Build. Eng., 23(2), 41-47.
- Yu, Z.W., Ding, F.X. and Cai, C.S. (2007), "Experimental behavior of circular concrete-filled steel tube stub columns", J. Constr. Steel Res., 63(2), 165-174. https://doi.org/10.1016/j.jcsr.2006.03.009.
- Zeghiche, J. and Chaoui, K. (2005), "An experimental behaviour of concrete-filled steel tubular columns", J. Constr. Steel Res., 61(1), 53-66. https://doi.org/10.1016/j.jcsr.2004.06.006.
- Zhang, S. and Wang, Y. (2004), "Failure modes of short columns of high-strength concrete filled steel tubes", China Civ. Eng. J., 37(9), 1-10.
- Zhao, X.L. and Han, L.H. (2006), "Double skin composite construction", Prog. Struct. Eng. Mater., 8, 93-102. https://doi.org/10.1002/pse.216.