DOI QR코드

DOI QR Code

Impact resistance efficiency of bio-inspired sandwich beam with different arched core materials

  • Kueh, Ahmad B.H. (Department of Civil Engineering, Faculty of Engineering, Universiti Malaysia Sarawak) ;
  • Tan, Chun-Yean (United Ivory Sdn Bhd) ;
  • Yahya, Mohd Yazid (Centre for Advanced Composite Materials (CACM), School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia) ;
  • Wahit, Mat Uzir (School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia)
  • Received : 2020.10.28
  • Accepted : 2021.05.21
  • Published : 2022.07.10

Abstract

Impact resistance efficiency of the newly designed sandwich beam with a laterally arched core as bio-inspired by the woodpecker is numerically investigated. The principal components of the beam comprise a dual-core system sandwiched by the top and bottom laminated CFRP skins. Different materials, including hot melt adhesive, high-density polyethylene (HDPE), acrylonitrile butadiene styrene (ABS), epoxy resin (EPON862), aluminum (Al6061), and mild carbon steel (AISI1018), are considered for the side-arched core layer of the beam for impact efficiency assessment. The aluminum honeycomb takes the role of the second core. Contact force, stress, damage formation, and impact energy for beams equipped with different materials are examined. A diversity in performance superiority is noticed in each of these indicators for different core materials. Therefore, for overall performance appraisal, the impact resistance efficiency index, which covers several chief impact performance parameters, of each sandwich beam is computed and compared. The impact resistance efficiency index of the structure equipped with the AISI1018 core is found to be the highest, about 3-10 times greater than other specimens, thus demonstrating its efficacy as the optimal material for the bio-inspired dual-core sandwich beam system.

Keywords

Acknowledgement

The authors thank Universiti Teknologi Malaysia and Universiti Malaysia Sarawak for funding the research with the Collaborative Research Grant (CRG) under the UTM - National initiative (grant number: GL/F02/CRGUTM/02/2020).

References

  1. Abo Sabah, S.H., Kueh, A.B.H. and Al-Fasih, M.Y. (2017), "Comparative low-velocity impact behavior of bio-inspired and conventional sandwich composite beams", Compos. Sci. Technol., 149, 64-74. https://doi.org/10.1016/j.compscitech.2017.06.014.
  2. Abo Sabah, S.H., Kueh, A.B.H. and Al-Fasih, M.Y. (2018), "Bioinspired vs. conventional sandwich beams: A low-velocity repeated impact behavior exploration", Constr. Build. Mater., 169, 193-204. https://doi.org/10.1016/j.conbuildmat.2018.02.201.
  3. Abo Sabah, S.H., Kueh, A.B.H. and Bunnori, N.M. (2019), "Failure mode maps of bio-inspired sandwich beams under repeated low-velocity impact", Compos. Sci. Technol., 182, 107785. https://doi.org/10.1016/j.compscitech.2019.107785.
  4. Abrate, S. (1997), "Localized impact on sandwich structures with laminated facings", Appl. Mech. Rev., 50(2), 69-82. https://doi.org/10.1115/1.3101689.
  5. Al-Fasih, M.Y., Kueh, A.B.H., Abo Sabah, S.H. and Yahya, M.Y. (2017), "Influence of tows waviness and anisotropy on effective Mode I fracture toughness of triaxially woven fabric composites", Eng. Fract. Mech., 182, 521-536. https://doi.org/10.1016/j.engfracmech.2017.03.051.
  6. Al-Fasih, M.Y., Kueh, A.B.H., Abo Sabah, S.H. and Yahya, M.Y. (2018), "Tow waviness and anisotropy effects on Mode II fracture of triaxially woven composite", Steel Compos. Struct., 26(2), 241-253. https://doi.org/10.12989/scs.2018.26.2.241.
  7. Al-Fasih, M.Y., Kueh, A.B.H. and W. Ibrahim, M.H. (2020), "Flexural behavior of sandwich beams with novel triaxially woven fabric composite skins", Steel Compos. Struct., 34(2), 299-308. https://doi.org/10.12989/scs.2020.34.2.299.
  8. Alfredsson, K.S., Gawandi, A.A., Gillespie Jr, J.W., Carlsson, L.A. and Bogetti, T.A. (2012), "Flexural analysis of discontinuous tile core sandwich structure", Compos. Struct., 94(5), 1524-1532. https://doi.org/10.1016/j.compstruct.2011.11.028.
  9. Bekci, M.L., Canpolat, B.H., Usta, E., Guler, M.S. and Cora, O.N. (2021), "Ballistic performances of Ramor 500 and Ramor 550 armor steels at mono and bilayered plate configurations", Eng. Sci. Technol. an Int. J. https://doi.org/10.1016/j.jestch.2021.01.001.
  10. Chai, G.B. and Zhu, S. (2011), "A review of low-velocity impact on sandwich structures", Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 225(4), 207-230. https://doi.org/10.1177/1464420711409985.
  11. Chen, J., Zhang, X., Okabe, Y., Saito, K., Guo, Z. and Pan, L. (2017), "The deformation mode and strengthening mechanism of compression in the beetle elytron plate", Mater. Des., 131, 481-486. https://doi.org/10.1016/j.matdes.2017.06.014.
  12. Daynes, S., Feih, S., Lu, W.F. and Wei, J. (2017), "Optimisation of functionally graded lattice structures using isostatic lines", Mater. Des., 127, 215-223. https://doi.org/10.1016/j.matdes.2017.04.082.
  13. Dragoni, E. (2013), "Optimal mechanical design of tetrahedral truss cores for sandwich constructions", J. Sandw. Struct. Mater., 15(4), 464-484. https://doi.org/10.1177/1099636213487364.
  14. Fathers, R.K., Gattas, J.M. and You, Z. (2015), "Quasi-static crushing of eggbox, cube, and modified cube foldcore sandwich structures", Int. J. Mech. Sci., 101, 421-428. https://doi.org/10.1016/j.ijmecsci.2015.08.013.
  15. Ghaedi, K., Ibrahim, Z., Javanmardi, A., Jameel, M., Hanif, U., Rehman, S.K. and Gordan, M. (2018), "Finite element analysis of a strengthened beam deliberating elastically isotropic and orthotropic CFRP material", J. Civ. Eng. Sci. Technol., 9(2), 117-126. https://doi.org/10.33736/jcest.991.2018.
  16. Haldar, S. and Bruck, H.A. (2014), "Mechanics of composite sandwich structures with bioinspired core", Compos. Sci. Technol., 95, 67-74. https://doi.org/10.1016/j.compscitech.2014.02.011.
  17. Hanif, M.U., Ibrahim, Z., Ghaedi, K., Javanmardi, A. and Rehman, S.K. (2018), "Finite element simulation of damage in RC beams", J. Civ. Eng. Sci. Technol., 9(1), 50-57. https://doi.org/10.33736/jcest.883.2018.
  18. Hanifehzadeh, M. and Mousavi, M.M.R. (2019), "Predicting the structural performance of sandwich concrete panels subjected to blast load considering dynamic increase factor", J. Civ. Eng. Sci. Technol., 10(1), 45-58. https://doi.org/10.33736/jcest.1067.2019.
  19. Hashin, Z. (1979), "Analysis of properties of fiber composites with anisotropic constituents", J. Appl. Mech., 46(3), 543-550. https://doi.org/10.1115/1.3424603
  20. Hou, Y., Neville, R., Scarpa, F., Remillat, C., Gu, B. and Ruzzene, M. (2014), "Graded conventional-auxetic Kirigami sandwich structures: Flatwise compression and edgewise loading", Compos. Part B Eng., 59, 33-42. https://doi.org/10.1016/j.compositesb.2013.10.084
  21. Hsu, D.K. (2009), "Nondestructive evaluation of sandwich structures: a review of some inspection techniques", J. Sandw. Struct. Mater., 11(4), 275-291. https://doi.org/10.1177/1099636209105377.
  22. Ibrahim, M.E. (2014), "Nondestructive evaluation of thick-section composites and sandwich structures: A review", Compos. Part A Appl. Sci. Manuf., 64, 36-48. https://doi.org/10.1016/j.compositesa.2014.04.010.
  23. Isaksson, P. and Carlsson, L.A. (2017), "Analysis of the out-ofplane compression and shear response of paper-based web-core sandwiches subject to large deformation", Compos. Struct., 159, 96-109. https://doi.org/10.1016/j.compstruct.2016.09.060.
  24. Jawalkar, B., Shirke, A. and Satpute, T. (2015), "Tensile test and fea correlation of ABS plastic", Int. J. Adv. Prod. Mech. Eng., 1(6), 33-37.
  25. Kaybal, H.B., Ulus, H., Demir, O., Sahin, O.S. and Avci, A. (2018), "Effects of alumina nanoparticles on dynamic impact responses of carbon fiber reinforced epoxy matrix nanocomposites", Eng. Sci. Technol. an Int. J., 21(3), 399-407. https://doi.org/10.1016/j.jestch.2018.03.011.
  26. Kueh, A.B.H. (2012), "Fitting-free hyperelastic strain energy formulation for triaxial weave fabric composites", Mech. Mater., 47, 11-23. https://doi.org/10.1016/j.mechmat.2012.01.001.
  27. Kueh, A.B.H. (2013), "Buckling of sandwich columns reinforced by triaxial weave fabric composite skin-sheets", Int. J. Mech. Sci., 66, 45-54. https://doi.org/10.1016/j.ijmecsci.2012.10.007.
  28. Kueh, A.B.H. (2014), "Size-influenced mechanical isotropy of singly-plied triaxially woven fabric composites", Compos. Part A Appl. Sci. Manuf., 57, 76-87. https://doi.org/10.1016/j.compositesa.2013.11.005.
  29. Kueh, A.B.H. (2021), "Artificial neural network and regressed beam-column connection explicit mathematical momentrotation expressions", J. Build. Eng., 43, 103195. https://doi.org/10.1016/j.jobe.2021.103195.
  30. Kueh, A.B.H. (2022), "Editorial scope - structure and material edition", J. Civ. Eng. Sci. Technol., 13(1), 1-5. https://doi.org/10.33736/jcest.4568.2022.
  31. Kueh, A.B.H. and Siaw, Y.Y. (2021), "Impact resistance of bioinspired sandwich beam with side-arched and honeycomb dualcore", Compos. Struct., 275, 114439. https://doi.org/10.1016/j.compstruct.2021.114439.
  32. Langdon, G.S., Cantwell, W.J., Guan, Z.W. and Nurick, G.N. (2014), "The response of polymeric composite structures to airblast loading: a state-of-the-art", Int. Mater. Rev., 59(3), 159-177. https://doi.org/10.1179/1743280413Y.0000000028.
  33. Li, W., Sun, F., Wang, P., Fan, H. and Fang, D. (2016), "A novel carbon fiber reinforced lattice truss sandwich cylinder: fabrication and experiments", Compos. Part A Appl. Sci. Manuf., 81, 313-322. https://doi.org/10.1016/j.compositesa.2015.11.034.
  34. Lin, Q., Jia, W., Wu, H., Kueh, A.B.H., Wang, Y., Wang, K. and Cai, J. (2021), "Wrapping deployment simulation analysis of leaf-inspired membrane structures", 8, 218. https://doi.org/10.3390/aerospace8080218.
  35. Littell, J.D., Ruggeri, C.R., Goldberg, R.K., Roberts, G.D., Arnold, W.A. and Binienda, W.K. (2008), "Measurement of epoxy resin tension, compression, and shear stress-strain curves over a wide range of strain rates using small test specimens", J. Aerosp. Eng., 21(3), 162-173. https://doi.org/10.1061/(ASCE)0893-1321(2008)21:3(162).
  36. Liu, T., Hou, S., Nguyen, X. and Han, X. (2017), "Energy absorption characteristics of sandwich structures with composite sheets and bio coconut core", Compos. Part B Eng., 114, 328-338. https://doi.org/10.1016/j.compositesb.2017.01.035.
  37. MatWeb (2020), https://www.matweb.com/search/datasheet_print.aspx?matguid=3a9cc570fbb24d119f08db22a53e2421. Accessed 14 May 2020.
  38. Mirdehghan, A., Nosraty, H., Shokrieh, M.M. and Akhbari, M. (2020), "Manufacturing and drop-weight impact properties of three-dimensional integrated-woven sandwich composite panels with hybrid core", J. Ind. Text., 1528083719896764. https://doi.org/10.1177/1528083719896764.
  39. Mokhatar, S.N., Abdullah, R. and Kueh, A.B.H. (2013), "Computational impact responses of reinforced concrete slabs", Comput. Concr., 12(1), 37-51. https://doi.org/10.12989/cac.2013.12.1.037.
  40. Mokhatar, S.N., Sonoda, Y., Kueh, A.B.H. and Jaini, Z.M. (2015), "Quantitative impact response analysis of reinforced concrete beam using the Smoothed Particle Hydrodynamics (SPH) method", Struct. Eng. Mech., 56(6), 917-938. https://doi.org/10.12989/sem.2015.56.6.917.
  41. Muschenborn, W. and Sonne, H.M. (1975), "Effect of strain path on the forming limits of sheet metal", 46(9), 597-602. https://doi.org/10.1002/srin.197503686.
  42. Nguyen-Van, V., Wickramasinghe, S., Ghazlan, A., Nguyen-Xuan, H. and Tran, P. (2020), "Uniaxial and biaxial bioinspired interlocking composite panels subjected to dynamic loadings", Thin-Wall. Struct., 157, 107023. https://doi.org/10.1016/j.tws.2020.107023.
  43. Noor, A.K., Burton, W.S. and Bert, C.W. (1996), "Computational models for sandwich panels and shells", Appl. Mech. Rev., 49(3), 155-199. https://doi.org/10.1115/1.3101923.
  44. San Ha, N. and Lu, G. (2020), "A review of recent research on bio-inspired structures and materials for energy absorption applications", Compos. Part B Eng., 181, 107496. https://doi.org/10.1016/j.compositesb.2019.107496
  45. San Ha, N., Lu, G., Shu, D. and Yu, T.X. (2020), "Mechanical properties and energy absorption characteristics of tropical fruit durian (Durio zibethinus)", J. Mech. Behav. Biomed. Mater., 104, 103603. https://doi.org/10.1016/j.jmbbm.2019.103603.
  46. Sayyad, A.S. and Ghugal, Y.M. (2017), "Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature", Compos. Struct., 171, 486-504. https://doi.org/10.1016/j.compstruct.2017.03.053.
  47. Sebaey, T.A. and Mahdi, E. (2017), "Crushing behavior of a unit cell of CFRP lattice core for sandwich structures' application", Thin-Wall. Struct., 116, 91-95. https://doi.org/10.1016/j.tws.2017.03.016.
  48. Shah, I.A., Khan, R., Koloor, S.S.R., Petru, M., Badshah, S., Ahmad, S. and Amjad, M. (2022), "Finite Element Analysis of the Ballistic Impact on Auxetic Sandwich Composite Human Body Armor", Materials (Basel)., 15(6), 2064. https://doi.org/10.3390/ma15062064
  49. Shinde, P.S., Singh, K.K., Tripathi, V.K., Sarkar, P.K. and Kumar, P. (2012), "Critical J-integral of thin aluminium sheets employing a modified single edge plate specimen", Int. J. Mod. Eng. Res., 2(3), 1360-1365.
  50. Sun, Z., Li, D., Zhang, W., Shi, S. and Guo, X. (2017), "Topological optimization of biomimetic sandwich structures with hybrid core and CFRP face sheets", Compos. Sci. Technol., 142, 79-90. https://doi.org/10.1016/j.compscitech.2017.01.029
  51. Sun, Z., Shi, S., Guo, X., Hu, X. and Chen, H. (2016), "On compressive properties of composite sandwich structures with grid reinforced honeycomb core", Compos. Part B Eng., 94, 245-252. https://doi.org/10.1016/j.compositesb.2016.03.054
  52. Talebi, E., Md Tahir, M., Zahmatkesh, F. and Kueh, A.B.H. (2014), "Comparative study on the behaviour of buckling restrained braced frames at fire", J. Constr. Steel Res., 102, 1-12. https://doi.org/10.1016/j.jcsr.2014.06.003
  53. Talebi, E., Tahir, M.M., Zahmatkesh, F. and Kueh, A.B.H. (2015), "A numerical analysis on the performance of buckling restrained braces at fire-study of the gap filler effect", Steel Compos. Struct., 19(3), 661-678. https://doi.org/10.12989/scs.2015.19.3.661
  54. Ullah, I., Elambasseril, J., Brandt, M. and Feih, S. (2014), "Performance of bio-inspired Kagome truss core structures under compression and shear loading", Compos. Struct., 118, 294-302. https://doi.org/10.1016/j.compstruct.2014.07.036
  55. Wang, Z. and Liu, J. (2018), "Mechanical performance of honeycomb filled with circular CFRP tubes", Compos. Part B Eng., 135, 232-241. https://doi.org/10.1016/j.compositesb.2017.09.048
  56. Wang, Z., Tian, H., Lu, Z. and Zhou, W. (2014), "High-speed axial impact of aluminum honeycomb-Experiments and simulations", Compos. Part B Eng., 56, 1-8. https://doi.org/10.1016/j.compositesb.2013.07.013.
  57. Wang, Z., Yao, S., Lu, Z., Hui, D. and Feo, L. (2016), "Matching effect of honeycomb-filled thin-walled square tube-experiment and simulation", Compos. Struct., 157, 494-505. https://doi.org/10.1016/j.compstruct.2016.03.045.
  58. Widi Pedana, I.R. (2020), https://www.academia.edu/11566153/POLYMER_TENSILE_TE ST_ANALYSIS. Accessed 23 June 2020.
  59. Wu, Y., Liu, Q., Fu, J., Li, Q. and Hui, D. (2017), "Dynamic crash responses of bio-inspired aluminum honeycomb sandwich structures with CFRP panels", Compos. Part B Eng., 121, 122-133. https://doi.org/10.1016/j.compositesb.2017.03.030.
  60. Yang, X., Ma, J., Shi, Y., Sun, Y. and Yang, J. (2017), "Crashworthiness investigation of the bio-inspired bidirectionally corrugated core sandwich panel under quasi-static crushing load", Mater. Des., 135, 275-290. https://doi.org/10.1016/j.matdes.2017.09.040.
  61. Yuan, W., Song, H. and Huang, C. (2016), "Failure maps and optimal design of metallic sandwich panels with truss cores subjected to thermal loading", Int. J. Mech. Sci., 115, 56-67. https://doi.org/10.1016/j.ijmecsci.2016.06.006.
  62. Zahmatkesh, F., Osman, M.H., Talebi, E. and Kueh, A.B.H. (2014), "Analytical study of slant end-plate connection subjected to elevated temperatures", Steel Compos. Struct., 17(1), 47-67. https://doi.org/10.12989/scs.2014.17.1.047.
  63. Zangana, S., Epaarachchi, J., Ferdous, W. and Leng, J. (2020), "A novel hybridised composite sandwich core with Glass, Kevlar and Zylon fibres-Investigation under low-velocity impact", Int. J. Impact Eng., 137, 103430. https://doi.org/10.1016/j.ijimpeng.2019.103430.
  64. Zhang, X., Xie, J., Chen, J., Okabe, Y., Pan, L. and Xu, M. (2017), "The beetle elytron plate: a lightweight, high-strength and buffering functional-structural bionic material", Sci. Rep., 7(1), 1-7. https://doi.org/10.1038/s41598-017-03767-w/