DOI QR코드

DOI QR Code

Analytical solution of buckling problem in plates reinforced by Graphene platelet based on third order shear deformation theory

  • Zhou, Linyun (School of Transportation, Southeast University) ;
  • Najjari, Yasaman (Department of Civil Engineering, Faculty of Engineering and Technology, University of Mazandaran)
  • 투고 : 2021.12.27
  • 심사 : 2022.05.24
  • 발행 : 2022.06.25

초록

In this paper, buckling analyses of nanocomposite plate reinforced by Graphen platelet (GPL) is studied. The Halphin-Tsai model is used for obtaining the effective material properties of nanocomposite plate. The nanocomposite plate is modeled by Third order shear deformation theory (TSDT). The elastic medium is simulated by Winkler model. Employing relations of strains-displacements and stress-strain, the energy equations of the plate are obtained and using Hamilton's principle, the governing equations are derived. The governing equations are solved based on analytical solution. The effect of GPL volume percent, geometrical parameters of plate and elastic foundation on the buckling load are investigated. Results show that with increasing GPLs volume percent, the buckling load increases. In addition, elastic medium can enhance the values of buckling load significantly.

키워드

과제정보

This work was supported by National Science Foundation of China (51808208).

참고문헌

  1. Allahkarami, F., Nikkhah-bahrami, M. and Ghassabzadeh Saryazdi, M. (2018) "Nonlinear forced vibration of FG-CNTsreinforced curved microbeam based on strain gradient theory considering out-of-plane motion", Steel Compos. Struct., 26(6), 10.12989/scs.2018.26.6.673.
  2. Al-Furjan, M.S.H., Farrokhian, A., Keshtegar, B., Kolahchi, R. and Trung, N.T. (2020), "Higher order nonlocal viscoelastic strain gradient theory for dynamic buckling analysis of carbon nanocones", Aerosp. Sci. Technol., 107, 106259, https://doi.org/10.1016/j.ast.2020.106259.
  3. Al-Furjan, M.S.H., Farrokhian, A., Keshtegar, B., Kolahchi, R. and Trung, N.T. (2021), "Dynamic stability control of viscoelastic nanocomposite piezoelectric sandwich beams resting on Kerr foundation based on exponential piezoelasticity theory", Europ. J. Mech. / A Solids, 86, 104-169. https://doi.org/10.1016/j.euromechsol.2020.104169.
  4. Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147.
  5. Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Abdeldjebb., Tounsi, ar., Bourada, Mahmoud, F.S.R., Adda Bedia, E.A. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct, 34(5),643-655. https://doi.org/10.12989/scs.2020.34.5.643.
  6. Civalek, O., Uzun, B. and M. Yayli O. (2020), "Frequency, bending and buckling loads of nanobeams with different cross sections", Adv. Nano Res., 9(2), 91-104. https://doi.org/10.12989/anr.2020.9.2.091.
  7. Dai, H. and Safarpour, H. (2021), "Frequency and thermal buckling information of laminated composite doubly curvedopen nanoshell", Adv. Nano Res., 10(1), 1-14, https://doi.org/10.12989/anr.2021.10.1.001.
  8. Farrokhian, A. (2020), "Buckling response of smart plates reinforced by nanoparticles utilizing analytical method", Steel Compos. Struct., 35(1), 1-12. https://doi.org/10.12989/scs.2020.35.1.001.
  9. Gao, K., Gao, W., Chen, D. and Yang, J. (2018) "Nonlinear free vibration of functionally graded graphene platelets reinforced porous nano composite plates resting on elastic foundation", Compos. Struct., 204, 831-846., https://doi.org/10.1016/j.compstruct.2018.08.013.
  10. Halpin Affdl, J.C. and Kardos, J.L. (1976), "The Halpin-Tsai equations: A review", Polym. Eng. Sci., 16, 344-352, https://doi.org/10.1002/pen.760160512.
  11. Halpin, J. (1969), "Effect of environmental factors on composite materials", US Air Force Mat. Laborat., Technical Report AFML-TR-67-423.
  12. Hosseini, S.M. and Zhang, C.H. (2018) "Elastodynamic and wave propagation analysis in a FG Graphene platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model", Steel Compos. Struct., 27., https://doi.org/10.12989/scs.2018.27.3.255.
  13. Jafari, P. and Kiani, Y. (2021), "Free vibration of functionally graded graphene platelet reinforced plates: A quasi 3D shear and normal deformable plate model", Compos. Struct., 275(1), 114409, https://doi.org/10.1016/j.compstruct.2021.114409.
  14. Al-Furjan, M.S.H., Farrokhian, A., Mahmoud, S.R. and Kolahchi, R. (2021), "Dynamic deflection and contact force histories of graphene platelets reinforced conical shell integrated with magnetostrictive layers subjected to low-velocity impact", Thin-Wall. Struct., 163, 107706. https://doi.org/10.1016/j.tws.2021.107706
  15. Kolahchi, R. and Cheraghbak, A. (2017), "Agglomeration effects on the dynamic buckling of visco elastic micro plates reinforced with SWCNTs using Bolotin method", Nonlinear Dyn., 90, 479-492. https://doi.org/10.1007/s11071-016-3085-6.
  16. Kolahchi, R., Keshtegar, B. and Trung, N.T. (2021), "Optimization of dynamic properties for laminated multiphase nanocomposite sandwich conical shell in thermal and magnetic conditions", Int. J. Sandw. Struc., https://doi.org/10.1177/10996362211020388.
  17. Kolahchi, R., Zarei, M.S.H., Hajmohammad, M.H. and Naddaf Oskouei, A. (2017), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin-Wall. Struct., 113, 162-169, https://doi.org/10.1016/j.tws.2017.01.016.
  18. Kolahdouzan, F., Mosayyebi, M., Ashenai F., Ghasemi,Kolahchi R. and Mousavi Panah S.R. (2020), "Free vibration and buckling analysis of elastically restrained FG-CNTRC sandwich annular nanoplates", Adv. Nano Res., 9(4), 237-250. https://doi.org/10.12989/anr.2020.9.4.237.
  19. Kumar, A., Chakrabarti, A. and Bhargava, P. (2014), "Accurate dynamic response of laminated composites and sandwich shells using higher order zigzag theory", Thin-Wall. Struct., 77, 174-186. https://doi.org/10.1016/j.tws.2013.09.026
  20. Li, K., Wu, D., Chen, X., Cheng, J., Liu, Z., Gao, W. and Liu, M. (2018), "Isogeometric analysis of functionally graded porous plates reinforced by graphene platelets", Compos. Struct., 204, 114-130. https://doi.org/10.1016/j.compstruct.2018.07.05977,174186.
  21. Liu, J., Wu, M., Yang, Y., Yang, G., Yan, H. and Jiang, K. (2018), "Preparation and mechanical performance of graphene platelet reinforced titanium nanocomposites for high temperature applications", J. Alloys Compd., 765, 1111-1118. https://doi.org/10.1016/j.jallcom.2018.06.148.
  22. Loja, M.A.R. (2017), "Dynamic response of soft core sandwich beams with metal-graphene nanocomposite skins", Shock Vib., 22, 7842413. https://doi.org/10.1155/2017/7842413.
  23. Matsunaga, H. (2000), "Vibration and stability of cross-ply laminated composite plates according to a global higher-order plate theory", Compos. Struct., 48, 231-244. https://doi.org/10.1016/S0263-8223(99)00110-5
  24. Moradi-Dastjerdi, R. and Payganeh, G.H. (2018), "Transient heat transfer analysis of functionally graded CNT reinforced cylinders with various boundary conditions", Steel Compos. Struct., 24(3), 359-367. https://doi.org/10.12989/scs.2017.24.3.359.
  25. Noor, A.K. (1975), "Stability of multilayered composite plates", Fibre. Sci. Tech., 8, 81-89. https://doi.org/10.1016/0015-0568(75)90005-6
  26. Polit, O., Anant, C., Anirudh, B. and Ganapathi, M. (2019), "Functionally graded graphene reinforced porous nanocomposite curved beams: Bending and elastic stability using a higher-order model with thickness stretch effect", Compos. Struct., 166, 310-327. https://doi.org/10.1016/j.compositesb.2018.11.074.
  27. Putcha, N.S. and Reddy, J.N. (1986), "Stability and natural vibration analysis of laminated plates by using a mixed element based on a refined plate theory", J. Sound Vib., 104, 285-300. https://doi.org/10.1016/0022-460X(86)90269-5
  28. Qin, Y., Luo, Ke, R. and Yan, X. (2020), "Buckling analysis of steel plates in composite structures with novel shape function", Steel Compos. Struc.t, 35(3), 405-413. https://doi.org/10.12989/scs.2020.35.3.405.
  29. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719.
  30. Rout, M., Hot, S.S. and Karmakar, A. (2019), "Thermoelastic free vibration response of graphene reinforced laminated composite shells", Eng. Struct., 178, 179-190. https://doi.org/10.1016/j.engstruct.2018.10.029.
  31. Simsek, M. and Reddy. J.N. (2013), "Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci., 64, 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002.
  32. Shokravi, M. (2017), "Buckling of sandwich plates with FG-CNTreinforced layers resting on orthotropic elastic medium using Reddy plate theory", Steel Compos. Struct., 23(6), 623-631. https://doi.org/10.12989/scs.2017.23.6.623.
  33. Thai, H. and Vo, T. (2013), "A new sinusoidal shear deformation theory for bending, buckling and vibration of functionally graded plates", Appl. Math. Model., 37, 3269-3281. https://doi.org/10.1016/j.apm.2012.08.008.
  34. Thai, H., Park, M. and Choi, D. (2013), "A simple refined theory for bending, buckling, and vibration of thick plates resting on elastic foundation", Int. J. Mech. Sci., 73, 40-52. https://doi.org/10.1016/j.ijmecsci.2013.03.017.
  35. Wang, Y., Feng, C., Zhao, Z. and Yang, J. (2018), "Eigenvalue buckling of functionally graded cylindrical shells reinforced with graphene platelets (GPL)", Compos. Struct., 202, 38-46. https://doi.org/10.1016/j.compstruct.2017.10.005.
  36. Zhang, L.W. and Selim, B.A. (2017), "Vibration analysis of CNTreinforced thick laminated composite plates based on Reddy's higher-order shear deformation theory", Compos. Struct., 160(15), 689-705. https://doi.org/10.1016/j.compstruct.2016.10.102.