Acknowledgement
This work was supported by the National Natural Science Foundation of China under Grants 51575329, 61773254, 61625304 and 61873157; in part by Shanghai Rising-Star Program under Grants 17QA1401500; in part by Science and Technology Commission of Shanghai under Grants 16441909400 and 17DZ1205000.
References
- Abo-Bakr, H.M., Abo-Bakr, R.M., Mohamed, S.A. and Eltaher, M. A. (2020a), "Weight optimization of axially functionally graded microbeams under buckling and vibration behaviors", Mech. Based Des. Struct. Machines, 1-22. http://doi.org/10.1080/15397734.2020.1838298.
- Abo-bakr, H.M., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M. A. (2021), "Multi-objective shape optimization for axially functionally graded microbeams", Compos. Struct., 258. http://doi.org/10.1016/j.compstruct.2020.113370.
- Abo-Bakr, R.M., Eltaher, M.A. and Attia, M.A. (2020b), "Pull-in and freestanding instability of actuated functionally graded nanobeams including surface and stiffening effects", Eng. Comput., 38, 255-276. http://doi.org/10.1007/s00366-020-01146-0.
- Adhikari, B. and Singh, B.N. (2019), "Dynamic Response of FGCNT Composite Plate Resting on an Elastic Foundation Based on Higher-Order Shear Deformation Theory", JAerE 32. http://doi.org/10.1061/(asce)as.1943-5525.0001052.
- Akbas, S.D., Bashiri, A.H., Assie, A.E. and Eltaher, M.A. (2020), "Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support", J. Vib. Control, 27, 1644-1655. http://doi.org/10.1177/1077546320947302.
- Alazwari, M.A., Abdelrahman, A.A., Wagih, A., Eltaher, M.A. and Abd-El-Mottaleb, H.E. (2021), "Static analysis of cutout microstructures incorporating the microstructure and surface effects", Steel Compos. Struct., 38, 583-597. http://doi.org/10.12989/scs.2021.38.5.583.
- Alibeigloo, A. and Liew, K.M. (2013), "Thermoelastic analysis of functionally graded carbon nanotube-reinforced composite plate using theory of elasticity", Compos. Struct.,106, 873-881. http://doi.org/10.1016/j.compstruct.2013.07.002.
- Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2020), "Stability of perforated nanobeams incorporating surface energy effects", Steel Compos. Struct., 35, 555-566. http://doi.org/10.12989/scs.2020.35.4.555.
- Ansari, M.I., Chaubey, A.K., Kumar, A., Chakrabarti, A. and Mishra, S.S. (2019), "Analysis of functionally graded carbon nanotube-reinforced laminates", Mater. Today: Proceedings 18, 628-637. http://doi.org/10.1016/j.matpr.2019.06.457.
- Arani, A.G., Kiani, F. and Afshari, H. (2021), "Free and forced vibration analysis of laminated functionally graded CNTreinforced composite cylindrical panels", J. Sandwich Struct. Mater., 23, 255-278. http://doi.org/10.1177/1099636219830787.
- Bendenia, N., Zidour, M., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Bedia, E.A.A., Mahmoud, S.R. and Tounsi, A. (2020), "Deflections, stresses and free vibration studies of FGCNT reinforced sandwich plates resting on Pasternak elastic foundation", Comput. Concrete, 26, 213-226. http://doi.org/10.12989/cac.2020.26.3.213.
- Cao, Y., Musharavati, F., Baharom, S., Talebizadehsardari, P., Sebaey, T.A., Eyvazian, A. and Zain, A.M. (2020), "Vibration response of FG-CNT-reinforced plates covered by magnetic layer utilizing numerical solution", Steel Compos. Struct., 37, 253-258. http://doi.org/10.12989/scs.2020.37.2.253.
- Chen, X., Alian, A.R. and Meguid, S.A. (2019), "Modeling of CNT-reinforced nanocomposite with complex morphologies using modified embedded finite element technique", Compos. Struct., 227. http://doi.org/10.1016/j.compstruct.2019.111329.
- Cheng, H., Li, C.F. and Jiang, Y. (2020), "Free vibration analysis of rotating pre-twisted ceramic matrix carbon nanotubes reinforced blades", Mech. Adv. Mater. Struct., 1-75. http://doi.org/10.1080/15376494.2020.1849881.
- Civalek, O. and Jalaei, M.H. (2020), "Shear buckling analysis of functionally graded (FG) carbon nanotube reinforced skew plates with different boundary conditions", Aeros. Sci. Technol. 99. http://doi.org/10.1016/j.ast.2020.105753.
- Craveiro, D.S. and Loja, M.A.R. (2020), "A study on the effect of carbon nanotubes' distribution and agglomeration in the free vibration of nanocomposite plates", C 6. http://doi.org/10.3390/c6040079.
- Daikh, A.A., Drai, A., Houari, M.S.A. and Eltaher, M.A. (2020), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct., 36, 643-656. http://doi.org/10.12989/scs.2020.36.6.643.
- Daikh, A.A., Houari, M.S.A., Karami, B., Eltaher, M.A., Dimitri, R. and Tornabene, F. (2021), "Buckling analysis of CNTRC curved sandwich nanobeams in thermal environment", Appl. Sci., 11. http://doi.org/10.3390/app11073250.
- Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. http://dx.doi.org/10.12989/sem.2021.80.1.063.
- Duc, N.D., Cong, P.H., Tuan, N.D., Tran, P. and Thanh, N.V. (2017), "Thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated conical shells surrounded by the elastic foundations", Thin-Wall. Struct., 115, 300-310. http://doi.org/10.1016/j.tws.2017.02.016.
- Duc, N.D. and Minh, P.P. (2021), "Free vibration analysis of cracked FG CNTRC plates using phase field theory", Aeros. Sci. Technol., 112. http://doi.org/10.1016/j.ast.2021.106654.
- Ebrahimi, F. and Farazmandnia, N. (2016), "Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory". Mech. Adv. Mater. Struct., 24, 820-829. http://doi.org/10.1080/15376494.2016.1196786.
- Eltaher, M.A. and Abdelrahman, A.A. (2020), "Bending behavior of squared cutout nanobeams incorporating surface stress effects", Steel Compos. Struct., 36, 143-161. http://doi.org/10.12989/scs.2020.36.2.143.
- Esawi, A.M.K. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: Potential and current challenges", Mater. Des., 28, 2394-2401. http://doi.org/10.1016/j.matdes.2006.09.022.
- Esen, I., Abdelrhmaan, A.A. and Eltaher, M.A. (2021a), "Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields", Eng. Comput., http://doi.org/10.1007/s00366-021-01389-5.
- Esen, I., Daikh, A.A. and Eltaher, M.A. (2021b), "Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load", Europ. Phys. J. Plus, 136. http://doi.org/10.1140/epjp/s13360-021-01419-7.
- Esen, I., Ozarpa, C. and Eltaher, M.A. (2021c), "Free vibration of a cracked FG microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment", Compos. Struct., 261. http://doi.org/10.1016/j.compstruct.2021.113552.
- Fu, T., Chen, Z., Yu, H., Hao, Q. and Zhao, Y. (2020), "Vibratory response and acoustic radiation behavior of laminated functionally graded composite plates in thermal environments", J. Sandw. Struct. Mater., 22, 1681-1706. http://doi.org/10.1177/1099636219856556.
- Han, F., Dan, D. and Cheng, W. (2018), "An exact solution for dynamic analysis of a complex double-beam system", Compos. Struct., 193, 295-305. http://doi.org/10.1016/j.compstruct.2018.03.088.
- Han, F., Dan, D. and Cheng, W. (2019), "Exact dynamic characteristic analysis of a double-beam system interconnected by a viscoelastic layer", Compos. Part B: Eng., 163, 272-281. http://doi.org/10.1016/j.compositesb.2018.11.043.
- Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci., 39, 315-323. http://doi.org/10.1016/j.commatsci.2006.06.011.
- Heidari, M. and Arvin, H. (2019), "Nonlinear free vibration analysis of functionally graded rotating composite Timoshenko beams reinforced by carbon nanotubes", J. Vib. Control, 25, 2063-2078. http://doi.org/10.1177/1077546319847836.
- Heshmati, M. and Yas, M.H. (2013), "Dynamic analysis of functionally graded multi-walled carbon nanotube-polystyrene nanocomposite beams subjected to multi-moving loads". Materials & Design 49, 894-904. http://doi.org/10.1016/j.matdes.2013.01.073
- Iijima, S. (1991), "Helical Microtubles of Graphtic Carbon", Natur, 354, 56-58. http://doi.org/10.1038/354056a0.
- Janghorban, M. and Nami, M.R. (2016), "Wave propagation in functionally graded nanocomposites reinforced with carbon nanotubes based on second-order shear deformation theory", Mech. Adv. Mater. Struct., 24, 458-468. http://doi.org/10.1080/15376494.2016.1142028.
- Janghorban, M. and Zare, A. (2011), "Free vibration analysis of functionally graded carbon nanotubes with variable thickness by differential quadrature method", Physica E: Low-dimen. Syst. Nanostruct., 43, 1602-1604. http://doi.org/10.1016/j.physe.2011.05.002.
- Jun, L. and Hongxing, H. (2008), "Dynamic stiffness vibration analysis of an elastically connected three-beam system", ApAc 69, 591-600. http://doi.org/10.1016/j.apacoust.2007.02.005.
- Kanagaraj, S., Varanda, F.R., Zhil'tsova, T.V., Oliveira, M.S.A. and Simoes, J.A.O. (2007), "Mechanical properties of high density polyethylene/carbon nanotube composites", Compos. Sci. Technol., 67, 3071-3077. http://doi.org/10.1016/j.compscitech.2007.04.024.
- Khosravi, F., Simyari, M., Hosseini, S.A. and Tounsi, A. (2020), "Size dependent axial free and forced vibration of carbon nanotube via different rod models", Adv. Nano Res., 9, 157-172. http://doi.org/10.12989/anr.2020.9.3.157.
- Liu, S. and Yang, B. (2019), "A closed-form analytical solution method for vibration analysis of elastically connected doublebeam systems", Compos. Struct., 212, 598-608. http://doi.org/10.1016/j.compstruct.2019.01.038.
- Lu, L., She, G.L. and Guo, X. (2021a), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199. http://doi.org/10.1016/j.ijmecsci.2021.106428
- Lu, L., Wang, S., Li, M. and Guo, X. (2021b), "Free vibration and dynamic stability of functionally graded composite microtubes reinforced with graphene platelets", Compos. Struct., 272. http://doi.org/10.1016/j.compstruct.2021.114231.
- Mallek, H., Jrad, H., Wali, M., Kessentini, A., Gamaoun, F. and Dammak, F. (2020), "Dynamic analysis of functionally graded carbon nanotube-reinforced shell structures with piezoelectric layers under dynamic loads", J. Vib. Control, 26, 1157-1172. http://doi.org/10.1177/1077546319892753.
- Nie, X., Zhao, L., Deng, S. and Chen, X. (2020), "How interlayer twist angles affect thermal conduction of double-walled nanotubes: A non-equilibrium molecular dynamics study", Int. J. Heat Mass Transfer, 160. http://doi.org/10.1016/j.ijheatmasstransfer.2020.120234.
- Odom, T.W., Huang, J.L., Kim, P. and Lieber, C.M. (1998), "Atomic structure and electronic properties of single-walled carbon nanotubes", Nature, 391, 62-64. http://doi.org/10.1038/34145.
- Ranjbar, M. and Feli, S. (2018), "Temperature-dependent analysis of axially functionally graded CNT reinforced micro-cantilever beams subjected to low velocity impact", Mech. Adv. Mater. Struct., 26, 1154-1168. http://doi.org/10.1080/15376494.2018.1432788.
- Rezaiee-Pajand, M., Sobhani, E. and Masoodi, A.R. (2020), "Free vibration analysis of functionally graded hybrid matrix/fiber nanocomposite conical shells using multiscale method", Aeros. Sci. Technol., 105. http://doi.org/10.1016/j.ast.2020.105998.
- She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin-Wall. Struct., 160, http://doi.org/10.1016/j.tws.2020.107407.
- She, G.L., Ding, H.X. and Zhang, Y.W. (2022), "Wave propagation in a FG circular plate via the physical neutral surface concept", Struct. Eng. Mech., 82(2), 225-232.
- She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Thermal Stresses, 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.
- Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91, 9-19. http://doi.org/10.1016/j.compstruct.2009.04.026.
- Shen, H.S. (2014), "Torsional postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments", Compos. Struct., 116, 477-488. http://doi.org/10.1016/j.compstruct.2014.05.039.
- Shen, H.S. and Xiang, Y. (2013), "Nonlinear analysis of nanotubereinforced composite beams resting on elastic foundations in thermal environments", Eng. Struct., 56, 698-708. http://doi.org/10.1016/j.engstruct.2013.06.002.
- Shen, H.S. and Zhang, C.L. (2010), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotubereinforced composite plates", Mater. Des., 31, 3403-3411. http://doi.org/10.1016/j.matdes.2010.01.048.
- Shirvanimoghaddam, K., Polisetti, B., Dasari, A., Yang, J., Ramakrishna, S. and Naebe, M. (2018), "Thermomechanical performance of cheetah skin carbon nanotube embedded composite: Isothermal and non-isothermal investigation", Polymer, 145, 294-309. http://doi.org/10.1016/j.polymer.2018.04.079.
- Sofiyev, A.H., Tornabene, F., Dimitri, R. and Kuruoglu, N. (2020), "Buckling behavior of FG-CNT reinforced composite conical shells subjected to a combined loading", Nanomaterials (Basel) 10. http://doi.org/10.3390/nano10030419.
- Subramani, M. and Ramamoorthy, M. (2021), "Vibration analysis of the multi-walled carbon nanotube reinforced doubly curved laminated composite shallow shell panels: An experimental and numerical study", J. Sandw. Struct. Mater., 23, 1594-1634. http://doi.org/10.1177/1099636219900484.
- Tans, S.J., Devoret, M.H., Dai, H.J., Thess, A., Smalley, R.E., Geerligs, L.J. and Dekker, C. (1997), "Individual single-wall carbon nanotubes as quantum wires". Nature 386, 474-477. http://doi.org/10.1038/386474a0.
- Vinyas, M. and Harursampath, D. (2020), "Nonlinear vibrations of magneto-electro-elastic doubly curved shells reinforced with carbon nanotubes", Compos. Struct., 253. http://doi.org/10.1016/j.compstruct.2020.112749.
- Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Comput. Mater. Sci., 71, 201-208. http://doi.org/10.1016/j.commatsci.2013.01.028.
- Yang, J., Huang, X.H. and Shen, H.S. (2020), "Nonlinear Vibration of Temperature-Dependent FG-CNTRC Laminated Beams with Negative Poisson's Ratio", Int. J. Struct. Stabil. Dyn., 20. http://doi.org/10.1142/s0219455420500431.
- Yang, J., Ke, L.L. and Feng, C. (2015), "Dynamic buckling of thermo-electro-mechanically loaded FG-CNTRC beams", Int. J. Struct. Stabil. Dyn., 15. http://doi.org/10.1142/s0219455415400179.
- Yas, M.H. and Heshmati, M. (2012), "Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load", Appl. Mathem. Modelling, 36, 1371-1394. http://doi.org/10.1016/j.apm.2011.08.037.
- Zghal, S., Frikha, A. and Dammak, F. (2018), "Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures", Appl. Mathem. Modelling, 53, 132- 155. http://doi.org/10.1016/j.apm.2017.08.021.
- Zhang, C.L. and Shen, H.S. (2006), "Temperature-dependent elastic properties of single-walled carbon nanotubes: Prediction from molecular dynamics simulation", Appl. Phys. Lett., 89. http://doi.org/10.1063/1.2336622.
- Zhang, Y.Y., Wang, Y.X., Zhang, X., Shen, H.M. and She, G.L. (2021), "On snap-buckling of FG-CNTR curved nanobeams considering surface effects", Steel Compos. Struct., 38, 293-304. http://doi.org/10.12989/scs.2021.38.3.293.
- Zhang, Y.W. and She, G.L. (2022), "Wave propagation and vibration of FG pipes conveying hot fluid", Steel Compos. Struct., 42(3), 397-405. http://doi.org/10.12989/scs.2022.42.3.397.
- Zhu, P., Lei, Z. X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94, 1450-1460. http://doi.org/10.1016/j.compstruct.2011.11.010.