DOI QR코드

DOI QR Code

Buckling resistance of axially loaded square concrete-filled double steel tubular columns

  • Ci, Junchang (College of Architecture and Civil Engineering, Beijing University of Technology) ;
  • Ahmed, Mizan (College of Architecture and Civil Engineering, Beijing University of Technology) ;
  • Tran, Viet-Linh (Department of Civil Engineering, Vinh University) ;
  • Jia, Hong (CRCC Development Group Co. Ltd.) ;
  • Chen, Shicai (College of Architecture and Civil Engineering, Beijing University of Technology) ;
  • Nguyen, Tan N. (Department of Architectural Engineering, Sejong University)
  • 투고 : 2021.01.07
  • 심사 : 2022.04.22
  • 발행 : 2022.06.25

초록

Thin-walled square concrete-filled double steel tubular (CFDST) columns composed of the inner circular tube filled with concrete can be used to carry the large axial loads or strengthen existing CFST columns in composite constructions. This paper reports an experimental program carried out on short square CFDST columns loaded concentrically. The influences of important column parameters on the post-buckling performance of such columns are investigated. Test results exhibit that the inner circular tube significantly improves the ultimate loads and the ductility of such columns compared to conventional concrete-filled steel tubular (CFST) and double-skin CFST (DCFST) columns with an inner void. A mathematical model developed is used to simulate the ultimate strengths and load-strain curves of such columns loaded axially. Furthermore, the ultimate strengths of such columns are predicted using existing codified design models for conventional CFST columns as well as the formulas proposed by previous researchers and compared against a large database comprising 500 CFDST columns. Lastly, an accurate artificial neural network model is developed for the practical applications of such columns under axial loading.

키워드

참고문헌

  1. ACI 318-19 (2019), Building Code Requirements for Structural Concrete and Commentary. Farmington Hills, Michigan, USA.
  2. Ahmed, M., Ci, J., Yan, X.F., Lin, S. and Chen, S. (2021a), "Numerical modeling of axially loaded circular concrete-filled double-skin steel tubular short columns incorporating a new concrete confinement model", Struct, 30, 611-627. https://doi.org/10.1016/j.istruc.2021.01.044.
  3. Ahmed, M., Liang, Q.Q. and Hamoda, A. (2022), "Fiber element modeling of circular double-skin concrete-filled stainlesscarbon steel tubular columns under axial load and bending", Adv. Struct. Eng.,13694332211065187. https://doi.org/10.1177%2F13694332211065187. https://doi.org/10.1177%2F13694332211065187
  4. Ahmed, M., Liang, Q.Q., Patel, V.I. and Hadi, M.N.S. (2018), "Nonlinear analysis of rectangular concrete-filled double steel tubular short columns incorporating local buckling", Eng. Struct., 175, 13-26. https://doi.org/10.1016/j.engstruct.2018.08.032.
  5. Ahmed, M., Liang, Q.Q., Patel, V.I. and Hadi, M.N.S. (2019a), "Experimental and numerical studies of square concrete-filled double steel tubular short columns under eccentric loading", Eng. Struct., 197, 109419. https://doi.org/10.1016/j.engstruct.2019.109419.
  6. Ahmed, M., Liang, Q.Q., Patel, V.I. and Hadi, M.N.S. (2019b), "Numerical analysis of axially loaded circular high strength concrete-filled double steel tubular short columns", Thin-Wall. Struct., 138, 105-116. https://doi.org/10.1016/j.tws.2019.02.001.
  7. Ahmed, M., Tran, V.L., Ci, J., Yan, X.F. and Wang, F. (2021b), "Computational analysis of axially loaded thin-walled rectangular concrete-filled stainless steel tubular short columns incorporating local buckling effects", Struct, 34, 4652-4668. https://doi.org/10.1016/j.istruc.2021.10.068.
  8. AIJ (1997), Recommendations for Design and Construction of Concrete Filled Steel Tubular Struct, Architectural Institute of Japan, Tokyo, Japan.
  9. AISC 360-16 (2016), Specification for Structural Steel Buildings, American Institute of Steel Construction. Chicago (IL), USA.
  10. Al-Khaleefi, A.M., Terro, M.J., Alex, A.P. and Wang, Y. (2002), "Prediction of fire resistance of concrete filled tubular steel columns using neural networks", Fire Safety J. 37(4), 339-352. https://doi.org/10.1016/S0379-7112(01)00065-0.
  11. Aslani, F., Uy, B., Wang, Z. and Patel, V. (2016), "Confinement models for high strength short square and rectangular concretefilled steel tubular columns", Steel Comp Struct., 22(5), 937-974. https://doi.org/10.12989/scs.2016.22.5.937.
  12. Ci, J., Ahmed, M., Jia, H., Chen, S., Zhou, D. and Hou, L. (2021a), "Experimental and numerical investigations of square concretefilled double steel tubular stub columns", Adv. Struct. Eng., 24(11), 2441-2456. https://doi.org/10.1177%2F13694332211004111. https://doi.org/10.1177%2F13694332211004111
  13. Ci, J., Ahmed, M., Tran, V.L., Jia, H. and Chen, S. (2021b), "Axial compressive behavior of circular concrete-filled double steel tubular short columns", Adv. Struct. Eng., 13694332211046345. https://doi.org/10.1177%2F13694332211046345. https://doi.org/10.1177%2F13694332211046345
  14. Ci, J., Chen, S., Jia, H., Yan, W., Song, T. and Kim, K.S. (2020), "Axial compression performance analysis and bearing capacity calculation on square concrete-filled double-tube short columns", Mar. Struct., 72, 102775. https://doi.org/10.1016/j.marstruc.2020.102775.
  15. Ci, J., Jia, H., Ahmed, M., Chen, S., Zhou, D. and Hou, L. (2021c), "Experimental and numerical analysis of circular concrete-filled double steel tubular stub columns with inner square hollow section", Eng. Struct., 227, 111400. https://doi.org/10.1016/j.engstruct.2020.111400.
  16. DBJ 13-51-2010 (2010), Technical Specifications for Concrete-Filled Steel Tubular Structures, The Housing and Urban-Rural Development, Department of Fujian Province, Fuzhou, China.
  17. Eurocode 4 (2004), Design of Composite Steel and Concrete Struct.-Part 1-1: General Rules and Rules for Buildings. European Committee for Standardization (CEN) Brussels, Belgium.
  18. GB/T 228.1-2010 (2010), Metallic materials-Tensile testing-Part 1:Method of test at room temperature. China.
  19. Hassanein, M. and Kharoob, O. (2014), "Analysis of circular concrete-filled double skin tubular slender columns with external stainless steel tubes", Thin-Wall. Struct., 79, 23-37. https://doi.org/10.1016/j.tws.2014.01.008.
  20. Ky, V., Tangaramvong, S. and Thepchatri, T. (2015), "Inelastic analysis for the post-collapse behavior of concrete encased steel composite columns under axial compression", Steel Comp Struct., 19(5), 1237-1258. https://doi.org/10.12989/scs.2015.19.5.1237.
  21. Lai, Z.C. and Varma, A.H. (2016), "Effective stress-strain relationships for analysis of noncompact and slender filled composite (CFT) members", Eng. Struct., 124, 457-472. https://doi.org/10.1016/j.engstruct.2016.06.028.
  22. Liang, Q.Q. and Fragomeni, S. (2009), "Nonlinear analysis of circular concrete-filled steel tubular short columns under axial loading", J. Const. Steel Res., 65(12), 2186-2196. https://doi.org/10.1016/j.jcsr.2009.06.015.
  23. Liang, Q.Q. (2009), "Strength and ductility of high strength concrete-filled steel tubular beam-columns", J Const Steel Res 65(3), 687-698. https://doi.org/10.1016/j.jcsr.2008.08.005.
  24. Liang, Q.Q. (2017), "Nonlinear analysis of circular double-skin concrete-filled steel tubular columns under axial compression", Eng Struct., 131, 639-650. https://doi.org/10.1016/j.engstruct.2016.10.019.
  25. Liang, Q.Q., Uy, B. and Liew, J.Y.R. (2007), "Local buckling of steel plates in concrete-filled thin-walled steel tubular beam-columns", J. Const. Steel Res., 63(3), 396-405. https://doi.org/10.1016/j.jcsr.2006.05.004.
  26. Lin, S., Zhao, Y.G. and Lu, Z.H. (2020), "Fibre beam element models for nonlinear analysis of concentrically loaded circular CFT columns considering the size effect", Eng. Struct., 210, 110400. https://doi.org/10.1016/j.engstruct.2020.110400.
  27. Lin, S., Zhao, Y.G., Lu, Z.H. and Yan, X.F. (2021), "Unified theoretical model for axially loaded concrete-filled steel tube stub columns with different cross-sectional shapes", J. Struct. Eng., 147(10), 04021159. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003150
  28. Mirza, S. and Lacroix, E.A. (2004), "Comparative strength analyses of concrete-encased steel composite columns", J. Struct. Eng., 130(12), 1941-1953. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:12(1941).
  29. Naderpour, H., Haji, M. and Mirrashid, M. (2020), "Shear capacity estimation of FRP-reinforced concrete beams using computational intelligence", Struct., 28, 321-328. https://doi.org/10.1016/j.istruc.2020.08.076.
  30. Naderpour, H., Rafiean, A.H. and Fakharian, P. (2018), "Compressive strength prediction of environmentally friendly concrete using artificial neural networks", J. Build. Eng., 16, 213-219. https://doi.org/10.1016/j.jobe.2018.01.007.
  31. Nguyen, D.D., Tran, V.L., Ha, D.H., Nguyen, V.Q. and Lee, T.H.A. (2021), "Machine learning-based formulation for predicting shear capacity of squat flanged RC walls", Struct., 1734-1747. https://doi.org/10.1016/j.istruc.2020.12.054.
  32. Nguyen, M.S.T., Thai, D.K. and Kim, S.E. (2020), "Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network", Steel Compos. Struct., 35(3), 415-437. https://doi.org/10.12989/scs.2020.35.3.497.
  33. Patel, V.I., Liang, Q.Q. and Hadi, M.N.S. (2017), "Nonlinear analysis of circular high strength concrete-filled stainless steel tubular slender beam-columns", Eng. Struct., 130, 1-13. https://doi.org/10.1016/j.engstruct.2016.10.004.
  34. Patel, V.I., Uy, B., Prajwal, K.A. and Aslani, F. (2016), "Confined concrete model of circular, elliptical and octagonal CFST short columns", Steel Compis. Struct 22(3), 497-520. https://doi.org/10.12989/scs.2016.22.3.497.
  35. Pei, W.J. (2005), Research on Mechanical Performance of Multibarrel Tube-Confined Concrete Columns. Master Thesis, Chang'an University, China.
  36. Qian, J., Li, N., Ji, X. and Zhao, Z. (2014), "Experimental study on the seismic behavior of high strength concrete filled doubletube columns", Earth Eng. Eng. Vib., 13(1), 47-57. https://doi.org/10.1007/s11803-014-0211-7
  37. Qian, J., Zhang, Y., Ji, X. , and Cao, W. (2011), "Test and analysis of axial compressive behavior of short composite-sectioned high strength concrete filled steel tubular columns", J. Build. Struct., 32(12), 162-169. http://www.jzjgxb.com/EN/Y2011/V32/I12/162
  38. Son, H., Yoon, C., Kim, Y., Jang, Y., Tran, V.L., Kim, S.E., Kim, D. J. and Park, J. (2022), "Damaged cable detection with statistical analysis, clustering, and deep learning models", Smart Struct. Syst., 29(1), 17-28. https://doi.org/10.12989/sss.2022.29.1.017.
  39. Tao, Z. and Han, L.H. (2006), "Behaviour of concrete-filled double skin rectangular steel tubular beam-columns", J. Const. Steel Res., 62(7), 631-646. https://doi.org/10.1016/j.jcsr.2005.11.008.
  40. Thai, H.T., Uy, B. and Khan, M. (2015), "A modified stress-strain model accounting for the local buckling of thin-walled stub columns under axial compression", J Construct. Steel Res., 111, 57-69. https://doi.org/10.1016/j.jcsr.2015.04.002.
  41. Tran, V.L. and Kim, S.E. (2020), "Efficiency of three advanced data-driven models for predicting axial compression capacity of CFDST columns", Thin-Walled Struct., 152, 106744. https://doi.org/10.1016/j.tws.2020.106744.
  42. Tran, V.L. and Kim, S.E. (2021), "A practical ANN model for predicting the PSS of two-way reinforced concrete slabs", Eng. Compos., 37, 2303-2327. https://doi.org/10.1007/s00366-020-00944-w.
  43. Tran, V.L. and Kim, S.E. (2022), "Application of GMDH model for predicting the fundamental period of regular RC infilled frames", Steel Compos. Struct., 42(1), 123-137.
  44. Tran, V.L., Jang, Y. and Kim, S.E. (2021), "Improving the axial compression capacity prediction of elliptical CFST columns using a hybrid ANN-IP model", Steel Compos. Struct., 39(3), 319-335. https://doi.org/10.12989/scs.2021.39.3.317.
  45. Tran, V.L., Thai, D.K. and Nguyen, D.D. (2020), "Practical artificial neural network tool for predicting the axial compression capacity of circular concrete-filled steel tube columns with ultra-high-strength concrete", Thin-Wall. Struct., 151, 106720. https://doi.org/10.1016/j.tws.2020.106720.
  46. Wang, Z.B., Tao, Z. and Yu, Q. (2017), "Axial compressive behaviour of concrete-filled double-tube stub columns with stiffeners", Thin-Wall. Struct., 120, 91-104. https://doi.org/10.1016/j.tws.2017.08.025.
  47. Yan, X.F. and Zhao, Y.G. (2020), "Compressive strength of axially loaded circular concrete-filled double-skin steel tubular short columns", J. Construct. Steel Res., 170, 106114. https://doi.org/10.1016/j.jcsr.2020.106114.
  48. Yan, X.F. and Zhao, Y.G. (2021), "Experimental and numerical studies of circular sandwiched concrete axially loaded CFDST short columns", Eng. Struct., 230, 111617. https://doi.org/10.1016/j.engstruct.2020.111617
  49. Yan, X.F., Zhao, Y.G. and Lin, S. (2021a), "Compressive behaviour of circular CFDST short columns with high-and ultrahigh-strength concrete", Thin-Wall. Struct., 164, 107898. https://doi.org/10.1016/j.tws.2021.107898.
  50. Yan, X.F., Zhao, Y.G., Lin, S. and Zhang, H. (2021b), "Confining stress path-based compressive strength model of axially compressed circular concrete-filled double-skin steel tubular short columns", Thin-Wall. Struct., 165, 107949. https://doi.org/10.1016/j.tws.2021.107949.
  51. Zheng, Y. and Tao, Z. (2019), "Compressive strength and stiffness of concrete-filled double-tube columns", Thin-Wall. Struct., 134, 174-188. https://doi.org/10.1016/j.tws.2018.10.019.