Acknowledgement
This research was supported by the Mid-Career Research Program through the National Research Foundation of Korea, funded by the Ministry of Science and ICT (Grant No. NRF-2018R1A2B6004546) and the A.I. Innovation Project Fund (Grant No. 1.210089) of UNIST (Ulsan national Institute of Science and Technology).
References
- AISC 360-16 (2016), Specification for Structural Steel Buildings, ANSI / AISC 360-16, American Institute of Steel Construction; IL, USA.
- ASCE (2016), Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-16, American Society of Civil Engineers; VA, USA.
- Asteris, P.G., Lemonis, M.E., Nguyen, T.A., Van Le, H. and Pham, B.T. (2021), "Soft computing-based estimation of ultimate axial load of rectangular concrete-filled steel tubes", Steel Compos. Struct., 39(1), https://doi.org/10.12989/scs.2021.39.4.471.
- Breiman, L. (2001), "Random forests", Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324.
- Cao, V. Van and Ronagh, H.R. (2014), "Correlation between seismic parameters of far-fault motions and damage indices of low-rise reinforced concrete frames", Soil Dynam. Earthq. Eng., 66, 102-112. https://doi.org/10.1016/j.soildyn.2014.06.020.
- Chen, T. and Guestrin, C. (2016), "XGBoost: A scalable tree boosting system", Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794, San Francisco, USA, August. https://doi.org/10.1145/2939672.2939785.
- Elkady, A. and Lignos, D.G. (2014), "Modeling of the composite action in fully restrained beam-to-column connections: Implications in the seismic design and collapse capacity of steel special moment frames", Earthq. Eng. Struct. Dynam., 43(13), 1935-1954. https://doi.org/10.1002/eqe.2430.
- Elkady, A. and Lignos, D.G. (2015), "Effect of gravity framing on the overstrength and collapse capacity of steel frame buildings with perimeter special moment frames", Earthq. Eng. Struct. Dynam.s, 44(8), 1289-1307. https://doi.org/10.1002/eqe.2519.
- EN 1998-1 (2004), Eurocode 8: Design of structures for earthquake resistance - Part 1 : General rules, seismic actions and rules for buildings, EN 1998-1: 2004, European Committee for Standardization; Brussels, Belgium.
- FEMA (2012), Assessing seismic performance of buildings with configuration irregularities: calibrating current standards and practices; Applied Technology Council, Washington D.C., USA. www.ATCouncil.org
- Feng, D.C., Wang, W.J., Mangalathu, S., Hu, G. and Wu, T. (2021), "Implementing ensemble learning methods to predict the shear strength of RC deep beams with/without web reinforcements", Eng. Struct., 235, 111979. https://doi.org/10.1016/j.engstruct.2021.111979.
- Freund, Y. and Schapire, R.E. (1997), "A decision-theoretic generalization of on-line learning and an application to boosting", J. Comput. Syst. Sci., 55(1), 119-139. https://doi.org/10.1006/jcss.1997.1504.
- Friedman, J.H. (2001), "Greedy function approximation: A gradient boosting machine", Annals Statistics, 29(5), 1189-1232. https://doi.org/10.1214/aos/1013203451.
- Fu, B. and Feng, D.C. (2021), "A machine learning-based timedependent shear strength model for corroded reinforced concrete beams", J. Build. Eng., 36, 102118. https://doi.org/10.1016/j.jobe.2020.102118.
- Gao, X. and Lin, C. (2021), "Prediction model of the failure mode of beam-column joints using machine learning methods", Eng. Failure Analysis, 120, 105072. https://doi.org/10.1016/j.engfailanal.2020.105072
- Guan, M., EERI, X., Burton, M., EERI, H. and Shokrabadi, M. (2021), "A database of seismic designs, nonlinear models and seismic responses for steel moment-resisting frame buildings", Earthq. Spectra, 37(2), 1199-1222. https://doi.org/10.1177/8755293020971209.
- Guo, K. and Yang, G. (2020), "Load-slip curves of shear connection in composite structures: Prediction based on ANNs", Steel Compos. Struct., 36(5), 493-506. https://doi.org/10.12989/scs.2020.36.5.493.
- Gupta, A. and Krawinkler, H. (1999), "Seismic Demands for Performance Evaluation of Steel", John A. Blume Earthquake Engineering Center Technical Report Series (Issue 132), Stanford University, CA, USA.
- Huang, H. and Burton, H.V. (2019), "Classification of in-plane failure modes for reinforced concrete frames with infills using machine learning", J. Build. Eng., 25, 100767. https://doi.org/10.1016/j.jobe.2019.100767.
- Hwang, S.H., Mangalathu, S., Shin, J. and Jeon, J.S. (2021), "Machine learning-based approaches for seismic demand and collapse of ductile reinforced concrete building frames", J. Build. Eng., 34, 101905. https://doi.org/10.1016/j.jobe.2020.101905.
- Ibarra, L.F. and Krawinkler, H. (2005), "Global Collapse of Frame Structures under Seismic Excitations", John A. Blume Earthquake Engineering Center Technical Report Series (Issue 152), Stanford University, CA, USA.
- Kiani, J., Camp, C. and Pezeshk, S. (2019), "On the application of machine learning techniques to derive seismic fragility curves", Comput. Struct., 218, 108-122. https://doi.org/10.1016/j.compstruc.2019.03.004.
- Kim, S.E., Vu, Q.V., Papazafeiropoulos, G., Kong, Z. and Truong, V.H. (2020), "Comparison of machine learning algorithms for regression and classification of ultimate load-carrying capacity of steel frames", Steel Compos. Struct., 37(2), 193-209. https://doi.org/10.12989/scs.2020.37.2.193.
- Krawinkler, H. (1978), "Shear in Beam-Column joints in seismic design of steel frames", Eng. J., 15(3), 82-91.
- Kuhn, M. and Johnson, K. (2013), "Applied predictive modeling", Applied Predictive Modeling, Berlin, Springer. https://doi.org/10.1007/978-1-4614-6849-3
- Lignos, D.G., Krawinkler, H. and Whittaker, A.S. (2011), "Prediction and validation of sidesway collapse of two scale models of a 4-story steel moment frame", Earthq. Eng. Struct. Dynam., 40(7), 807-825. https://doi.org/10.1002/eqe.1061.
- Lignos Dimitrios, G., Hikino, T., Matsuoka, Y. and Nakashima, M. (2013), "Collapse assessment of steel moment frames based on e-defense full-scale shake table collapse tests", J. Struct. Eng., 139(1), 120-132. https://doi.org/10.1061/(asce)st.1943-541x.0000608.
- Lignos, D.G. and Krawinkler, H. (2011), "Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading", J. Struct. Eng., 137(11), 1291-1302. https://doi.org/10.1061/(asce)st.1943-541x.0000376.
- Lim, S. and Chi, S. (2019), "Xgboost application on bridge management systems for proactive damage estimation", Adv. Eng. Informatics, 41, 100922. https://doi.org/10.1016/j.aei.2019.100922.
- Lundberg, S.M., Erion, G.G. and Lee, S.I. (2018), "Consistent individualized feature attribution for tree ensembles", arXiv preprint arXiv:1802.03888, https://doi.org/10.48550/arXiv.1802.03888.
- Lundberg, S.M. and Lee, S.I. (2017), "A unified approach to interpreting model predictions", Adv. Neural Info Process. Syst., 30, 4766-4775.
- Mangalathu, S., Jang, H., Hwang, S.H. and Jeon, J.S. (2020), "Data-driven machine-learning-based seismic failure mode identification of reinforced concrete shear walls", Eng. Struct., 208, 110331. https://doi.org/10.1016/j.engstruct.2020.110331
- Mangalathu, S., Shin, H., Choi, E. and Jeon, J.S. (2021), "Explainable machine learning models for punching shear strength estimation of flat slabs without transverse reinforcement", J. Build. Eng., 39, 102300. https://doi.org/10.1016/j.jobe.2021.102300.
- Mangalathu, S., Sun, H., Nweke, C. C., Yi, Z. and Burton, H. V. (2020), "Classifying earthquake damage to buildings using machine learning", Earthq. Spectra, 36(1), 183-208. https://doi.org/10.1177/8755293019878137.
- Mazzoni, S., McKenna, F., Scott, M.H. and Fenves, G.L. (2006), "OpenSees command language manual", Pacific Earthquake Engineering Research (PEER) Center, 264(1), 137-158.
- Miranda, E. (1999), "Approximate Seismic Lateral Deformation Demands in Multistory Buildings", J. Struct. Eng., 125(4), 417-425. https://doi.org/10.1061/(asce)0733-9445(1999)125:4(417).
- Morfidis, K. and Kostinakis, K. (2018), "Approaches to the rapid seismic damage prediction of r/c buildings using artificial neural networks", Eng. Struct., 165, 120-141. https://doi.org/10.1016/j.engstruct.2018.03.028.
- Nguyen-Sy, T., Wakim, J., To, Q.D., Vu, M.N., Nguyen, T.D. and Nguyen, T.T. (2020), "Predicting the compressive strength of concrete from its compositions and age using the extreme gradient boosting method", Construct. Build. Mater., 260, 119757. https://doi.org/10.1016/j.conbuildmat.2020.119757
- Nguyen, H.D., Dao, N.D. and Shin, M. (2021), "Prediction of seismic drift responses of planar steel moment frames using artificial neural network and extreme gradient boosting", Eng. Struct., 242, 112518. https://doi.org/10.1016/j.engstruct.2021.112518.
- Nguyen, H.D., Dao, N.D. and Shin, M. (2022), "Machine learning-based prediction for maximum displacement of seismic isolation systems", J. Build. Eng., 51, 104251. https://doi.org/10.1016/j.jobe.2022.104251.
- Nguyen, H.D., LaFave, J.M., Lee, Y.-J. and Shin, M. (2022), "Rapid seismic damage-state assessment of steel moment frames using machine learning", Eng. Struct., 252, 113737. https://doi.org/10.1016/j.engstruct.2021.113737.
- Nguyen, H.D. and Shin, M. (2021), "Effects of soil-structure interaction on seismic performance of a low-rise R/C moment frame considering material uncertainties", J. Build. Eng., 44, 102713. https://doi.org/10.1016/j.jobe.2021.102713.
- Nguyen, H.D., Torbol, M. and Shin, M. (2020), "Reliability assessment of a planar steel frame subjected to earthquakes in case of an implicit limit-state function", J. Build. Eng., 32, 101782. https://doi.org/10.1016/j.jobe.2020.101782.
- Nguyen, H.D., Truong, G.T. and Shin, M. (2021), "Development of extreme gradient boosting model for prediction of punching shear resistance of r/c interior slabs", Eng. Struct., 235, 112067. https://doi.org/10.1016/j.engstruct.2021.112067.
- Nguyen, M.S.T., Thai, D.K. and Kim, S.E. (2020), "Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network", Steel Compos. Struct., 35(3), 415-437. https://doi.org/10.12989/SCS.2020.35.3.415.
- Nguyen, N.V., Nguyen, H.D. and Dao, N.D. (2022), "Machine learning models for predicting maximum displacement of triple pendulum isolation systems", Structures, 36, 404-415. https://doi.org/10.1016/j.istruc.2021.12.024.
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. (2011), "Scikit-learn: Machine learning in Python", J. Machine Learning Res., 12, 2825-2830.
- Raschka, S. (2018), "Model evaluation, model selection and algorithm selection in machine learning", arXiv preprint arXiv:1811.12808. https://doi.org/10.48550/arXiv.1811.12808.
- Shariati, M., Mafipour, M. S., Mehrabi, P., Zandi, Y., Dehghani, D., Bahadori, A., Shariati, A., Trung, N. T., Salih, M. N. A. and Poi-Ngian, S. (2019), "Application of Extreme Learning Machine (ELM) and Genetic Programming (GP) to design steelconcrete composite floor systems at elevated temperatures", Steel Compos. Struct., 33(3), 319-332. https://doi.org/10.12989/scs.2019.33.3.319.
- Shariati, M., Trung, N.T., Wakil, K., Mehrabi, P., Safa, M. and Khorami, M. (2019), "Moment-rotation estimation of steel rack connection using extreme learning machine", Steel Compos. Struct., 35(5), 427-435. https://doi.org/10.12989/scs.2019.31.5.427.
- Sohil, F., Sohali, M.U. and Shabbir, J. (2021), "An introduction to statistical learning with applications in R", Statistical Theory Related Fields, 6(1), 87. https://doi.org/10.1080/24754269.2021.1980261
- Tran, V.L., Jang, Y. and Kim, S.E. (2021), "Improving the axial compression capacity prediction of elliptical CFST columns using a hybrid ANN-IP model", Steel Compos. Struct., 39(3), 319-335. https://doi.org/10.12989/scs.2021.39.3.319
- Truong, V.H., Vu, Q.V., Thai, H.T. and Ha, M.H. (2020), "A robust method for safety evaluation of steel trusses using Gradient Tree Boosting algorithm", Adv. Eng. Software, 147, 102825. https://doi.org/10.1016/j.advengsoft.2020.102825.
- Vu, Q.V., Truong, V.H. and Thai, H.T. (2021), "Machine learningbased prediction of CFST columns using gradient tree boosting algorithm", Compos. Struct., 259, 113505. https://doi.org/10.1016/j.compstruct.2020.113505.
- Xie, Y., Ebad Sichani, M., Padgett, J.E. and DesRoches, R. (2020), "The promise of implementing machine learning in earthquake engineering: A state-of-the-art review", Earthq. Spectra, 36(4), 1769-1801. https://doi.org/10.1177/8755293020919419.
- Zhou, Z.H. (2015), "Ensemble learning", Encyclopedia of Biometrics, 411-416. Springer, New York, USA. https://doi.org/10.1007/978-1-4899-7488-4_293.