DOI QR코드

DOI QR Code

Effects of Pasternak foundation on the bending behavior of FG porous plates in hygrothermal environment

  • Bot, Ikram Kheira (Industrial Engineering and Sustainable Development Laboratory, University of Rélizane, Faculty of Science & Technology, Mechanical Engineering Department) ;
  • Bousahla, Abdelmoumen Anis (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes) ;
  • Zemri, Amine (University of Relizane, Faculty of Science & Technology, Civil Engineering Department) ;
  • Sekkal, Mohamed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Kaci, Abdelhakim (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Bourada, Fouad (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Ghazwani, M.H. (Department of Mechanical Engineering, Faculty of Engineering, Jazan University) ;
  • Mahmoud, S.R. (GRC Department, Jeddah Community College, King Abdulaziz University)
  • 투고 : 2021.09.09
  • 심사 : 2022.04.12
  • 발행 : 2022.06.25

초록

This research is devoted to study the effects of humidity and temperature on the bending behavior of functionally graded (FG) ceramic-metal porous plates resting on Pasternak elastic foundation using a quasi-3D hyperbolic shear deformation theory developed recently. The present plate theory with only four unknowns, takes into account both transverse shear and normal deformations and satisfies the zero traction boundary conditions on the surfaces of the functionally graded plate without using shear correction factors. Material properties of porous FG plate are defined by rule of the mixture with an additional term of porosity in the through-thickness direction. The governing differential equations are obtained using the "principle of virtual work". Analytically, the Navier method is used to solve the equations that govern a simply supported FG porous plate. The obtained results are checked by comparing the results determined for the perfect and imperfect FG plates with those available in the scientific literature. Effects due to material index, porosity factors, moisture and thermal loads, foundation rigidities, geometric ratios on the FG porous plate are all examined. Finally, this research will help us to design advanced functionally graded materials to ensure better durability and efficiency for hygro-thermal environments.

키워드

참고문헌

  1. Abdalla, J.A., Ibrahim, A.M. (2006), "Development of a discrete Reissner-Mindlin element on Winkler foundation", Finite Elem. Anal. Des., 42(8-9), 740-748. https://doi.org/10.1016/j.finel.2005.11.004.
  2. Abed, Z.A.K. and Majeed, W.I. (2020), "Effect of boundary conditions on harmonic response of laminated plates", Compos. Mater. Eng., 2(2), 125-140. https://doi.org/10.12989/cme.2020.2.2.125.
  3. Ahmed, R.A., Al-Maliki, A.F. and Faleh, N.M. (2020), "Dynamic characteristics of multi-phase crystalline porous shells with using strain gradient elasticity", Adv. Nano Res, 8(2), 157-167. https://doi.org/10.12989/anr.2020.8.2.157.
  4. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  5. Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/SCS.2015.19.6.1421.
  6. Akbas, S.D. (2021), "Dynamic analysis of axially functionally graded porous beams under a moving load", Steel Compos. Struct., 39(6), 811-821. https://doi.org/10.12989/SCS.2021.39.6.811.
  7. Akbas, S.D., Bashiri, A.H., Assie, A.E. and Eltaher, M.A. (2021), "Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support", J. Vib. Control, 27(13-14),1644-1655. https://doi.org/10.1177/1077546320947302.
  8. Akbas, S.D. (2017), "Vibration and static analysis of functionally graded porous plates", J. Appl. Comput. Mech., 3(3), 199-207. HTTPS://DOI.ORG/10.22055/JACM.2017.21540.1107.
  9. Alabas, M.B. and Majid, W.I. (2020), "Thermal buckling analysis of laminated composite plates with general elastic boundary supports", J. Eng., 26(3), 1-17. https://doi.org/10.31026/j.eng.2020.03.01.
  10. Al-Basyouni, K.S., Ghandourah, E., Mostafa, H.M. and Algarni, A. (2020), "Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body", Geomech. Eng., 21(1), 1-9. https://doi.org/10.12989/GAE.2020.21.1.001.
  11. Ali, A.H. and Majeed. W.I. (2021), "Transient Analysis of Laminated composite Plate using New Higher Order Shear Deformation Theory", IOP Conf. Series: Materials Science and Engineering, 1094-012040. http://doi.org/10.1088/1757-899X/1094/1/012040.
  12. Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A.E. (2021b), "Damped forced vibration analysis of layered functionally graded thick beams with porosity", Smart Struct. Syst., 27(4), 669-689. http://dx.doi.org/10.12989/sss.2021.27.4.669.
  13. Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A. (2021a), "Forced vibration of a functionally graded porous beam resting on viscoelastic foundation", Geomech. Eng., 24(1), 91-103. http://dx.doi.org/10.12989/gae.2021.24.1.091.
  14. Arshid, E. and Khorshidvand, A.R. (2018), "Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method", Thin-Wall. Struct., 125, 220-233. http://doi.org/10.1016/j.tws.2018.01.007.
  15. Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci., 115,73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011.
  16. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/SCS.2019.30.6.603.
  17. Avcar, M., Mohammed, W.K.M. (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundation", Arab. J. Geosci., 11(10), 232. https://doi.org/10.1007/s12517-018-3579-2.
  18. Barati, M.R. (2018), "A general nonlocal stress-strain gradient theory for forced vibration analysis of heterogeneous porous nanoplates", Eur. J. Mech. A Solids, 67, 215-230. https://doi.org/10.1016/j.euromechsol.2017.09.001.
  19. Beg, M.S., Khalid, H.M., Yasin, M.Y. and Hadji, L. (2021), "Exact third-order static and free vibration analyses of functionally graded porous curved beam", Steel Compos. Struct., 39(1), 1-20. https://doi.org/10.12989/SCS.2021.39.1.001.
  20. Behravan Rad, A. and Alibeigloo, A. (2013), "Semi-analytical solution for the static analysis of 2D functionally graded solid and annular circular plates resting on elastic foundation", Mech. Adv. Mater. Struct., 20(7), 515-528. DOI:10.1080/15376494.2011.634088.
  21. Behravan Rad, A. and Shariyat, M. (2015), "Three-dimensional magneto-elastic analysis of asymmetric variable thickness porous FGM circular plates with non-uniform tractions and Kerr elastic foundations", Compos. Struct., 125, 558-574. https://doi.org/10.1016/j.compstruct.2015.02.049.
  22. Bharath, H.S., Waddar, S., Bekinal, S.I., Jeyaraj, P. and Doddamani, M. (2020), "Effect of axial compression on dynamic response of concurrently printed sandwich", Compos. Struct., 113223. https://doi.org/10.1016/j.compstruct.2020.113223.
  23. Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev., 60(5), 195-216. https://doi.org/10.1115/1.2777164.
  24. Bouazza, M., Becheri, T., Boucheta, A. and Benseddiq, N. (2019), "Bending behavior of laminated composite plates using the refined four-variable theory and the finite element method", Earthq. Struct., 17(3), 257-270. https://doi.org/10.12989/eas.2019.17.3.257.
  25. Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2011), "Effects of thickness stretching in functionally graded plates and shells", Compos. Part B, 42(2), 123-133. https://doi.org/10.1016/j.compositesb.2010.10.005.
  26. Carrera, E., Brischetto, S. and Robaldo, A. (2008), "Variable kinematic model for the analysis of functionally graded material plates", AIAA J., 46 (1), 194-203. https://doi.org/10.2514/1.32490.
  27. Chen, D., Kitipornchai, S. and Yang, J. (2016), "Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core", Thin-Wall. Struct., 107, 39-48. https://doi.org/10.1016/j.tws.2016.05.025.
  28. Chen, D., Kitipornchai, S. and Yang, J. (2017a), "Dynamic response and energy absorption of functionally graded porous structures", Mater. Des., 140, 473-487. https://doi.org/10.1016/j.matdes.2017.12.019.
  29. Chen, D., Yang, J. and Kitipornchai, S. (2017b), "Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams", Compos Sci Technol, 142, 235-245. https://doi.org/10.1016/j.compscitech.2017.02.008.
  30. Chen, S., Zhang, Q. and Liu, H. (2021), "Dynamic response of double-FG porous beam system subjected to moving load", Eng. Comput., https://doi.org/10.1007/s00366-021-01376-w.
  31. Chucheepsakul, S. and Chinnaboon, B. (2002), "An alternative domain/boundary element technique for analyzing plates on two-parameter elastic foundations", Eng. Anal Boundary Elem., 26, 547-555. https://doi.org/10.1016/S0955-7997(02)00007-3.
  32. Civalek, O. (2007), "Nonlinear analysis of thin rectangular plates on Winkler-Pasternak elastic foundations by DSCHDQ methods", Appl Math Model., 31(3), 606-624. https://doi.org/10.1016/j.apm.2005.11.023.
  33. Cong, P.H., Chien, T.M., Khoa, N.D. and Duc, N.D. (2018), "Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy's HSDT", Aerosp Sci. Technol., 77, 419-428. https://doi.org/10.1016/j.ast.2018.03.020.
  34. Daouadji, T.H. and Hadji, L. (2015), "Analytical solution of nonlinear cylindrical bending for functionally graded plates", Geomech. Eng., 9(5), 631-644. https://doi.org/10.12989/GAE.2015.9.5.631.
  35. Derbale, A., Bouazza, M. and Benseddiq, N. (2021), "Analysis of the mechanical and thermal buckling of laminated beams by new refined shear deformation theory", Iran. J. Sci. Technol., Transactions Civil Eng., 45(1), 89-98. https://doi.org/10.1007/s40996-020-00417-6.
  36. Ebrahimi, F., Jafari, A. and Selvamani, R. (2020), "Thermal buckling analysis of magneto-electro-elastic porous FG beam in thermal environment", Adv. Nano Res., 8(1), 83-94. http://dx.doi.org/10.12989/anr.2020.8.1.083.
  37. Faleh, N.M., Fenjan, R.M. and Ahmed, R.A. (2018), "Dynamic analysis of graded small-scale shells with porosity distributions under transverse dynamic loads", Europ. Phys. J. Plus, 133(9), 1-11. https://doi.org/10.1140/epjp/i2018-12152-5.
  38. Farzaneh Joubaneh, E., Mojahedin, A., Khorshidvand, A.R. and Jabbari, M. (2015), "Thermal buckling analysis of porous circular plate with piezoelectric sensor-actuator layers under uniform thermal load", J. Sandwich Struct. Mater., 17(1), 3-25. https://doi.org/10.1177/1099636214554172.
  39. Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2019), "Investigating dynamic stability of metal foam nanoplates under periodic in-plane loads via a three-unknown plate theory", Adv. Aircraft Spacecraft Sci., 6(4), 297-314. https://doi.org/10.12989/aas.2019.6.4.297.
  40. Feyzi, M.R. and Khorshidvand, A.R. (2017), "Axisymmetric postbuckling behavior of saturated porous circular plates", Thin-Wall. Struct., 112, 149-158. https://doi.org/10.1016/J.TWS.2016.11.026.
  41. Hadji, L. and Avcar, M. (2021), "Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory", Adv. Nano Res., 10(3), 281-293. https://doi.org/10.12989/ANR.2021.10.3.281.
  42. Hadji, L. (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253.
  43. Hamed, M.A., Abo-Bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core", Eng. Comput., 36(4), 1929-1946. https://doi.org/10.1007/s00366-020-01023-w.
  44. Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. http://dx.doi.org/10.12989/sem.2019.71.1.089.
  45. Hammed, M.B. and Majeed, W.I. (2019), "Free vibration analysis of laminated composite plates with general boundary elastic supports under initial thermal load", Al-Khwarizmi Eng. J., 15(4), 23-32. https://doi.org/10.22153/kej.2019.09.004.
  46. Han, J.B. and Liew, K.M. (1997), "Numerical differential quadrature method for Reissner/Mindlin plates on twoparameter foundations", Int. J. Mech. Sci., 39(9), 977-989. https://doi.org/10.1016/S0020-7403(97)00001-5.
  47. Huang, W. and Tahouneh, V. (2021), "Frequency study of porous FGPM beam on two-parameter elastic foundations via Timoshenko theory", Steel Compos. Struct., 40(1), 139-156. https://doi.org/10.12989/SCS.2021.40.1.139.
  48. Ibrahim, W.M. and Ghani, R.A. (2017), "Free vibration analysis of laminated composite plates with general elastic boundary supports", J. Eng., 23(4), 100-124. https://doi.org/10.31026/j.eng.2017.04.07
  49. Keleshteri, M.M. and Jelovica, J. (2021), "Nonlinear vibration analysis of bidirectional porous beams", Eng. Comput., https://doi.org/10.1007/s00366-021-01553-x.
  50. Khorshidvand, A.R., Farzaneh Joubaneh, E., Jabbari, M. and Eslami, M.R. (2014), "Buckling analysis of a porous circular plate with piezoelectric sensor actuator layers under uniform radial compression", Acta Mech., 225, 179-193. https://doi.org/10.1007/s00707-013-0959-2.
  51. Kiani, Y. (2019), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates", J. Thermal Stresses, 1-19. https://doi.org/10.1080/01495739.2019.1673687.
  52. Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
  53. Li, X., Wang, T., Liu, F. and Zhu, Z. (2021), "Computer simulation of the nonlinear static behavior of axially functionally graded microtube with porosity", Adv. Nano Res., 11(4), 437-451. https://doi.org/10.12989/ANR.2021.11.4.437.
  54. Madeh, A.R. and Majeed, W.I. (2021), "Effect of boundary conditions on thermal buckling of laminated composite shallow shell", Mater. Today: Proceedings, 42, 2397-2404. https://doi.org/10.1016/j.matpr.2020.12.501.
  55. Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
  56. Madenci, E., & Ozkilic, Y. O. (2021), "Cyclic response of selfcentering SRC walls with frame beams as boundary", Steel and Composite Structures, 40(2), 157-173. https://doi.org/10.12989/SCS.2021.40.2.157.
  57. Majeed, W. I. (2021), "Thermal buckling analysis of cross-ply plates based on new displacement field", Journal of Engineering Research, 9(3 B), 302-316. DOI: 10.36909/jer.v9i3B.8494.
  58. Majeed, W.I. and Abed, Z.A.K. (2019), "Buckling and pre stressed dynamics analysis of laminated composite plate with different boundary conditions", Al-Khwarizmi Eng. J., 15(1), 46-55. https://doi.org/10.22153/kej.2019.07.002.
  59. Majeed, W.I. and Tayeh, F.H. (2015), "Stability and dynamic analysis of laminated composite plates", J. Eng., 21(8), 139-159. https://doi.org/10.31026/j.eng.2015.08.09
  60. Majeed, W.I. and Ebtihal A.S. (2017), "Buckling Analysis of Angle Ply Plates Using New Displacement Function", IJRTESS.
  61. Majeed, W.I. and Ebtihal A.S. (2018), "Buckling and pre stressed vibration analysis of laminated plates using new shear deformation", IOP Conf. Series: Materials Science and Eng., 454, https://doi.org/10.1088/1757-899X/454/1/012006.
  62. Mantari J.L., Soares, C.G. (2012b), "Bending analysis of thick exponentially graded plates using a new trigonometric higher order shear deformation theory", Compos. Struct. 94(6), 1991 -2000. https://doi.org/10.1016/j.compstruct.2012.01.005.
  63. Mantari, J.L. and Soares, C.G. (2012a), "Generalized hybrid quasi-3D shear deformation theory for the static analysis of advanced composite plates", Compos. Struct. 94(8), 2561-2575. https://doi.org/10.1016/j.compstruct.2012.02.019.
  64. Mantari, J.L. and Soares, C.G. (2013), "A novel higher-order shear deformation theory with stretching effect for functionally graded plates", Compos. Part B: Eng., 45, 268-281. DOI:10.1016/J.COMPOSITESB.2012.05.036.
  65. Mehar, K. and Panda, S. K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/ANR.2019.7.3.181.
  66. Merzoug, M., Bourada, M., Sekkal, M., Ali Chaibdra, A., Belmokhtar, C., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361.
  67. Mindlin, R.D. (1951), "Thickness-shear and flexural vibrations of crystal plates", J. Appl. Phys., 22(3), 316-323. https://doi.org/10.1063/1.1699948.
  68. Mirjavadi, S. S., Forsat, M., Nia, A.F., Badnava, S. and Hamouda, A.M.S. (2020), "Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells", Adv. Nano Res., 8(2), 149-156. http://dx.doi.org/10.12989/anr.2020.8.2.149.
  69. Mohammadimehr, M. and Meskini, M. (2020), "Analysis of porous micro sandwich plate: Free and forced vibration under magneto-electro-elastic loadings", Adv. Nano Res., 8(1), 69-82. http://dx.doi.org/10.12989/anr.2020.8.1.069.
  70. Mojahedin, A., Farzaneh Joubaneh, E. and Jabbari, M. (2014), "Thermal and mechanical stability of a circular porous plate with piezoelectric actuators", Acta Mech., 225, 3437-3452. https://doi.org/10.1007/s00707-014-1153-x.
  71. Mojahedin, A., Jabbari, M., Khorshidvand, A.R. and Eslami, M.R. (2016), "Buckling analysis of functionally graded circular plates made of saturated porous materials based on higher order shear deformation theory", Thin-Wall. Struct., 99, 83-90. https://doi.org/10.1016/j.tws.2015.11.008.
  72. Ozgan, K. and Daloglu, A.T. (2007), "Alternative plate finite elements for the analysis of thick plates on elastic foundations", Struct. Eng. Mech., 26(1), 69-86. https://doi.org/10.12989/SEM.2007.26.1.069.
  73. Pabst, W. and Gregorova, E. (2004a), "Effective elastic properties of alumina-zirconia composite ceramics: Part 2. Micromechanical modeling", CeramicsSilikaty, 48, 14-23.
  74. Pabst, W. and Gregorova, E. (2004b), "Mooney-type relation for the porosity dependence of the effective tensile modulus of ceramics", J. Mater. Sci., 39, 3213-3215. https://doi.org/10.1023/B:JMSC.0000025863.55408.c9.
  75. Pabst, W. and Gregorova, E. (2014c), "Youngs modulus of isotropic porous materials with spheroidal pores", J. Eur. Ceram. Soc., 34, 3195-3207. https://doi.org/10.1016/j.jeurceramsoc.2014.04.009.
  76. Priyanka, R., Twinkle, C.M. and Pitchaimani, J. (2021), "Stability and dynamic behavior of porous FGM beam: influence of graded porosity, graphene platelets, and axially varying loads", Eng. Comput., https://doi.org/10.1007/s00366-021-01478-5.
  77. Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065.
  78. Rahimi, A., Alibeigloo, A. and Safarpour, M. (2020), "Threedimensional static and free vibration analysis of graphene platelet-reinforced porous composite cylindrical shell", J. Vib. Control, 26(19-20), 1627-1645. https://doi.org/10.1177/1077546320902340.
  79. Rahmani, M. and Mohammadi, Y. (2021), "Vibration of two types of porous FG sandwich conical shell with different boundary conditions", Struct. Eng. Mech., 79(4), 401-413. https://doi.org/10.12989/SEM.2021.79.4.401.
  80. Ramteke, P.M., Panda, S.K. and Sharma, N. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., 33(6), 865-875. http://dx.doi.org/10.12989/scs.2019.33.6.865.
  81. Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. appl. Mech., A69-A77. https://doi.org/10.1115/1.4009435.
  82. Rezaei, A.S. and Saidi, A.R. (2015), "Exact solution for free vibration of thick rectangular plates made of porous materials", Compos. Struct., 134, 1051-1060. https://doi.org/10.1016/j.compstruct.2015.08.125.
  83. Rezaei, A.S. and Saidi, A.R. (2016), "Application of Carrera unified formulation to study the effect of porosity on natural frequencies of thick porous-cellular plates", Compos. B, 91, 361-370. https://doi.org/10.1016/j.compositesb.2015.12.050.
  84. Rezaei, A.S. and Saidi, A.R. (2017), "Buckling response of moderately thick fluid-infiltrated porous annular sector plates", Acta Mech., 228, 3929-3945. https://doi.org/10.1007/s00707-017-1908-2.
  85. Rostami, R. and Mohammadimehr, M. (2020), "Vibration control of rotating sandwich cylindrical shell-reinforced nanocomposite face sheet and porous core integrated with functionally graded magneto-electro-elastic layers", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-020-01052-5.
  86. Safarpour, M., Rahimi, A., Alibeigloo, A., Bisheh, H. and Forooghi, A. (2021), "Parametric study of three-dimensional bending and frequency of FG-GPLRC porous circular and annular plates on different boundary conditions", Mech. Based Des. Struct. Machines, 49(5), 707-737. https://doi.org/10.1080/15397734.2019.1701491.
  87. Sahnoun, M., Ouinas, D., Benderdouche, N., Bouazza, M. and Vina, J. (2013), "Hygrothermal effect on stiffness reduction modeling damage evolution in cross-ply composite laminates", Adv. Mater. Res., 629, 79-84. https://doi.org/10.4028/www.scientific.net/AMR.629.79.
  88. Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam". Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/SSS.2020.26.3.361.
  89. Shafiei, N., Mirjavadi, S.S., Mohasel Afshari, B., Rabby, S. and Kazemi, M. (2017), "Vibration of two dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams", Comput. Meth. Appl. Mech. Eng., 322, 615-632. https://doi.org/10.1016/j.cma.2017.05.007.
  90. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016), "On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams", Int. J. Eng. Sci., 106, 42-56. https://doi.org/10.1016/j.ijengsci.2016.05.007.
  91. Shen, H.S., Yang, J. and Zhang, L. (2001), "Free and forced vibration of Reissner-Mindlin plates with free edges resting on elastic foundations", J. Sound. Vib., 244(2), 299-320. https://doi.org/10.1006/jsvi.2000.3501.
  92. Shen, H.S. (2000), "Nonlinear analysis of simply supported Reissner-Mindlin plates subjected to lateral pressure and thermal loading and resting on two-parameter elastic foundations", Eng. Struct., 22(11), 1481-1493. https://doi.org/10.1016/S0141-0296(99)00086-3.
  93. Thai, H.T. and Vo, T.P. (2013), "A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates", Appl. Math. Model. 37(5), 3269-3281. https://doi.org/10.1016/j.apm.2012.08.008.
  94. Thai, H.T. and Choi, D.H. (2013), "A simple refined theory for bending, buckling, and vibration of thick plates resting on elastic foundation", Int. J. Mech. Sci., 73, 40-52. https://doi.org/10.1016/j.ijmecsci.2013.03.017.
  95. Thanh, C.L., Nguyen, T.N., Vu, T.H., Khatir, S. and Abdel Wahab, M. (2020), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-020-01154-0.
  96. Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete., 26(1), 53-62. https://doi.org/10.12989/CAC.2020.26.1.053.
  97. Tlidji, Y., Benferhat, R. and Tahar, H.D. (2021), "Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity", Struct. Eng. Mech., 77(2), 217-229. https://doi.org/10.12989/SEM.2021.77.2.217.
  98. Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
  99. Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
  100. Winkler, E. (1867), "Die Lehre von der Elastizitat and Festigkeit", Prag. Dominicus, 1867.
  101. Wu, D., Liu, A., Huang, Y., Huang, Y., Pi, Y. and Gao, W. (2018), "Dynamic analysis of functionally graded porous structures through finite element analysis", Eng. Struct., 165, 287-301. https://doi.org/10.1016/j.engstruct.2018.03.023.
  102. Xiang, Y. (2003), "Vibration of rectangular Mindlin plates resting on non-homogenous elastic foundations", Int. J. Mech. Sci., 45(6-7), 1229-1244. https://doi.org/10.1016/S0020-7403(03)00141-3.
  103. Yahea, H.T. and Majeed, W.I. (2021), "Thermal buckling of laminated composite plates using a simple four variable plate theory", J. Eng., 27(9), 1-19. https://doi.org/10.31026/j.eng.2021.09.01.
  104. Yang, B., Ding, H.J. and Chen, W.Q. (2012), "Elasticity solutions for functionally graded rectangular plates with two opposite edges simply supported", Appl. Math. Model., 36(1), 488-503. https://doi.org/10.1016/j.apm.2011.07.020.
  105. Yang, J., Chen, D. and Kitipornchai, S. (2018), "Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev Ritz method", Compos. Struct., 193, 281-294. https://doi.org/10.1016/j.compstruct.2018.03.090.
  106. Yas, M.H. and Tahouneh, V. (2012), "3-D Free vibration analysis of thick functionally graded annular plates on Pasternak elastic foundation via differential quadrature method (DQM)", Acta. Mech., 223(1), 43-62. https://doi.org/10.1007/s00707-011-0543-6.
  107. Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/CAC.2020.26.2.107.
  108. Yuksel, Y.Z. and Akbas, S.D. (2021), "Hygrothermal stress analysis of laminated composite porous plates", Struct. Eng. Mech., 80(1), 1-13. https://doi.org/10.12989/SEM.2021.80.1.001.
  109. Zenkour, A.M. (2007), "Benchmark trigonometric and 3-D elasticity solutions for an exponentially graded thick rectangular plate", Arch. Appl. Mech. 77, 197-214. https://doi.org/10.1007/s00419-006-0084-y.
  110. Zenkour, A.M., Allam, M.N.M. and Radwan, A.F. (2014), "Effects of transverse shear and normal strains on FG plates resting on elastic foundations under hygro-thermo-mechanical loading", Int. J. Appl. Mech. 6(5), 1450063. https://doi.org/10.1142/S175882511450063X.
  111. Zhou, D., Cheung, Y.K., Lo, S.H. and Au, F.T.K. (2004), "Threedimensional vibration analysis of rectangular thick plates on Pasternak foundation", Int. J. Numer. Methods. Eng., 59(10), 1313-1334. https://doi.org/10.1002/nme.915.