DOI QR코드

DOI QR Code

Nonlinear damping and forced vibration analysis of laminated composite plates with composite viscoelastic core layer

  • Youzera, Hadj (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli) ;
  • Ali, Abbache (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli) ;
  • Meftah, Sid Ahmed (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes) ;
  • Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
  • 투고 : 2021.11.05
  • 심사 : 2022.04.11
  • 발행 : 2022.07.10

초록

The purpose of the present work is to study the parametric nonlinear vibration behavior of three layered symmetric laminated plate. In the analytical formulation; both normal and shear deformations are considered in the core layer by means of the refined higher-order zig-zag theory. Harmonic balance method in conjunction with Galerkin procedure is adopted for simply supported laminate plate, to obtain its natural and damping properties. For these aims, a set of complex amplitude equations governed by complex parameters are written accounting for the geometric nonlinearity and viscoelastic damping factor. The frequency response curves are presented and discussed by varying the material and geometric properties of the core layer.

키워드

참고문헌

  1. Abbache, A., Youzera, H., Abualnour, M., Houari, M.S., Meftah, S. and Tounsi, A. (2021), "Superharmonic vibrations of sandwich beams with fibre composite core layer based on the multiple scale method", Struct. Eng. Mech., 80(2)2, 201-210. https://doi.org/10.12989/sem.2021.80.2.201.
  2. Afaq, K.S., Karama, M. and Mistou, S. (2003), "Un nouveau modele raffine pour les structures multicouches", Comput. Rendus Des., 13, 289-292.
  3. Allahkarami, F., Nikkhah-Bahrami, M. and Saryazdi, M.G. (2017), "Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM", Steel Compos. Struct., 25(2), 141-155. https://doi.org/10.12989/scs.2017.25.2.141.
  4. Benaoum, A., Youzera, H., Abualnour, M., Houari, M.S.A., Meftah, S.A. and Tounsi, A. (2021), "Superharmonic vibrations of sandwich beams with viscoelastic core layer with the multiple scale method", Struct. Eng. Mech., 80(6), 727-736. https://doi.org/10.12989/sem.2021.80.6.727.
  5. Bert, C.W. and Chen, T.L.C. (1978), "Effect of shear deformation on vibration of antisymmetric angle-ply laminated rectangular plates", Int. J. Solids Struct., 14(6), 465-473. https://doi.org/10.1016/0020-7683(78)90011-2.
  6. Bert, C.W. and Francis, P.H. (1974), "Composite material mechanics", Struct. Mech., AIAA J., 12(9).1173-1186.
  7. Bhimaraddi, A. (1995), "Sandwich beam theory and the analysis of constrained layer damping", J. Sound Vib., 179(4), 591-602. https://doi.org/10.1006/jsvi.1995.0039.
  8. Chen, H., Song, H., Li, Y. and Safarpour, M. (2020), "Hygrothermal buckling analysis of polymer-CNT-fiber-laminated nanocomposite disk under uniform lateral pressure with the aid of GDQM", Eng. Comput., 1-25. https://doi.org/10.1007/s00366-020-01102-y.
  9. Cheraghbak, A., Dehkordi, M.B. and Golestanian, H. (2019), "Vibration analysis of sandwich beam with nanocompositefacesheets considering structural damping effects", Steel Compos. Struct., 32(6), 795-806. https://doi.org/10.12989/scs.2019.32.6.795.
  10. Demir, E. (2016), "A study on natural frequencies and damping ratios of composite beams with holes", Steel Compos. Struct., 21(6), 1211-1226. https://doi.org/10.12989/scs.2016.21.6.1211.
  11. Demir, E. (2017b), "Vibration and damping behaviors of symmetric layered functional graded sandwich beams", Struct. Eng. Mech., 62(6), 771-780. https://doi.org/10.12989/sem.2017.62.6.771.
  12. Dewangan, H.C. and Panda, S.K. (2020), "Numerical thermoelastic eigenfrequency prediction of damaged layered shell panel with concentric/eccentric cutout and corrugated (TD/TID) properties", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01199-1.
  13. Gibson, R.F. and Plunkett, R. (1977), "Dynamic stiffness and damping of fiber-reinforced composite materials", Shock Vib. Dig., 9-18. https://doi:10.1177/058310247700900205.
  14. Gibson, R.F. and Wilson, D.G. (1979), "Dynamic mechanical properties of fiber-reinforced composite materials", Shock Vib. Dig., 11(10), 3. https://doi.org/10.1177/058310247901101001
  15. Heidari, F., Taheri, K., Sheybani, M., Janghorban, M. and Tounsi, A. (2021), "On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes", Steel Compos. Struct., 38(5), 533-545. https://doi.org/10.12989/scs.2021.38.5.533.
  16. Hu, H., Belouettar, S. and Potier-Ferry, M. (2008), "Review and assessment of various theories for modeling sandwich composites", Compos. Struct., 84(3), 282-292. https://doi.org/10.1016/j.compstruct.2007.08.007.
  17. Hyer, M.W., Anderson, W.J. and Scott, R.A. (1976), "Non-linear vibrations of three-layer beams with viscoelastic cores I. Theory", J. Sound Vib., 46(1), 121-136. https://doi.org/10.1016/0022-460X(76)90822-1.
  18. Kapuria, S., Dumir, P.C. and Jain, N.K. (2004), "Assessment of zigzag theory for static loading, buckling, free and forced response of composite and sandwich beams", Compos. Struct., 64(3-4), 317-327. https://doi.org/10.1016/j.compstruct.2003.08.013.
  19. Keshav, V. and Patel, S.N. (2020), "Non-Linear dynamic pulse buckling of laminated composite curved panels", Struct. Eng. Mech., 73(2), 181-190. https://doi.org/10.12989/sem.2020.73.2.181.
  20. Kirchhoff, G.R. (1950), "Uber das gleichgewicht und die bewegung einer elastischen scheibe", 19(40), 51-88.
  21. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A. (2017b), "Wave propagation of embedded viscoelastic FGCNTreinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci., 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039.
  22. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Oskouei, A.N. (2017a), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin Wall. Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016.
  23. Kovac Jr, E.J., Anderson, W.J. and Scott, R.A. (1971), "Forced non-linear vibrations of a damped sandwich beam", J. Sound Vib., 17(1), 25-39. https://doi.org/10.1016/0022-460X(71)90131-3.
  24. Laib, S., Meftah, S.A., Youzera, H., Ziane, N. and Tounsi, A. (2021), "Vibration and damping characteristics of the masonry wall strengthened with bonded fibre composite patch with viscoelastic adhesive layer", Comput. Concrete., 27(3), 253-268. https://doi.org/10.12989/cac.2021.27.3.253.
  25. Matlab (2006), The MathWorksInc, Natick, MA.
  26. Melo, J.D.D. and Radford, D.W. (2003), "Viscoelastic characterization of transversely isotropic composite laminae", J. Compos. Mater., 37(2), 129-145. https://doi.org/10.1106/002199803028990.
  27. Moayedi, H., Ebrahimi, F., Habibi, M., Safarpour, H. and Foong, L.K. (2021), "Application of nonlocal strain-stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell", Eng. Comput., 37(4),3359-3374. https://doi.org/10.1007/s00366-020-01002-1.
  28. Naghdi, P.M. (1956), "A survey of recent progress in theory of elastic shells", Appl Mech Rev., 9, 365-388.
  29. Rao, M.K. and Desai, Y.M. (2004), "Analytical solutions for vibrations of laminated and sandwich plates using mixed theory", Compos. Struct., 63(3-4), 361-373. https://doi.org/10.1016/S0263-8223(03)00185-5.
  30. Rao, M.K., Scherbatiuk, K., Desai, Y.M. and Shah, A.H. (2004), "Natural vibrations of laminated and sandwich plates", J. Eng. Mech., 130(11), 1268-1278.
  31. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719.
  32. Rikards, R. (1993), "Finite element analysis of vibration and damping of laminated composites", Compos. Struct., 24(3), 193-204. https://doi.org/10.1016/0263-8223(93)90213-A.
  33. Thai, C.H., Nguyen-Xuan, H., Nguyen-Thanh, N., Le, T.H., Nguyen-Thoi, T. and Rabczuk, T. (2012), "Static, free vibration, and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS-based isogeometric approach", Int. J. Numer. Meth. Eng., 91(6),571-603. https://doi.org/10.1002/nme.4282.
  34. Tanzadeh, H. and Amoushahi, H. (2020), "Analysis of laminated composite plates based on different shear deformation plate theories", Struct. Eng. Mech., 75(2), 247-269. https://doi.org/10.12989/sem.2020.75.2.247.
  35. Timoshenko, S.P. (1922), "On the transverse vibrations of bars of uniform cross-section", London, Edinburgh, Dublin Philos. Mag. J. Sci., 43(253), 125-131. https://doi.org/10.1080/14786442208633855.
  36. Belabed, Z., Selim, M. M., Slimani, O., Taibi, N., Tounsi, A. and Hussain, M. (2021), "An efficient higher order shear deformation theory for free vibration analysis of functionally graded shells", Steel Compos. Struct., 40(2), 307-321. https://doi.org/10.12989/scs.2021.40.2.307.
  37. Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.
  38. Wang, H., Yan, W. And Li, C. (2020), "Response of angle-ply laminated cylindrical shells with surface bonded piezoelectric layers", Struct. Eng. Mech., 76(5), 599-611. https://doi.org/10.12989/sem.2020.76.5.599.
  39. Whitney, J.M. and Sun, C.T. (1973), "A higher order theory for extensional motion of laminated composites", J. Sound Vib., 30(1), 85-97. https://doi.org/10.1016/S0022-460X(73)80052-5.
  40. Whitney, J.M. and Sun, C.T. (1974), "A refined theory for laminated anisotropic, cylindrical shells", J. Appl. Mech., 41, 47-60. https://doi.org/10.1115/1.3423312.
  41. Youzera, H., Meftah, S.A., Challamel, N. and Tounsi, A. (2012), "Nonlinear damping and forced vibration analysis of laminated composite beams", Compos. Part B: Eng., 43(3), 1147-1154. https://doi.org/10.1016/j.compositesb.2012.01.008.
  42. Youzera, H., Meftah, S.A. and Daya, E.M. (2017), "Superharmonic resonance of cross-ply laminates by the method of multiple scales", J. Comput. Nonlin. Dyn., 12(5). 054503. https://doi.org/10.1115/1.4036914.
  43. Youzera, H. and Meftah, S.A. (2017), "Nonlinear damping and forced vibration behaviour of sandwich beams with transverse normal stress", Compos. Struct., 179, 258-268. https://doi.org/10.1016/j.compstruct.2017.07.038.
  44. Youzera, H., Meftah, S.A., Selim, M.M. and Tounsi, A. (2021), "Finite element method for axial and bending coupling effect on free vibration response of functionally graded beams under thermal environment", Mech. Adv. Mater. Struct., 1-15. https://doi.org/10.1080/15376494.2021.1979140.
  45. Yu, T., Yin, S., Bui, T. Q., Xia, S., Tanaka, S. and Hirose, S. (2016), "NURBS-based isogeometric analysis of buckling and free vibration problems for laminated composites plates with complicated cutouts using a new simple FSDT theory and level set method", Thin-Walled Struct., 101, 141-156. https://doi.org/10.1016/j.tws.2015.12.008.
  46. Zinoviev, P.A. and Ermakov, Y.N. (1994). "Energy dissipation in compos. materials", CRC Press. https://doi.org/10.1201/9780203757529.