참고문헌
- Abbache, A., Youzera, H., Abualnour, M., Houari, M.S., Meftah, S. and Tounsi, A. (2021), "Superharmonic vibrations of sandwich beams with fibre composite core layer based on the multiple scale method", Struct. Eng. Mech., 80(2)2, 201-210. https://doi.org/10.12989/sem.2021.80.2.201.
- Afaq, K.S., Karama, M. and Mistou, S. (2003), "Un nouveau modele raffine pour les structures multicouches", Comput. Rendus Des., 13, 289-292.
- Allahkarami, F., Nikkhah-Bahrami, M. and Saryazdi, M.G. (2017), "Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM", Steel Compos. Struct., 25(2), 141-155. https://doi.org/10.12989/scs.2017.25.2.141.
- Benaoum, A., Youzera, H., Abualnour, M., Houari, M.S.A., Meftah, S.A. and Tounsi, A. (2021), "Superharmonic vibrations of sandwich beams with viscoelastic core layer with the multiple scale method", Struct. Eng. Mech., 80(6), 727-736. https://doi.org/10.12989/sem.2021.80.6.727.
- Bert, C.W. and Chen, T.L.C. (1978), "Effect of shear deformation on vibration of antisymmetric angle-ply laminated rectangular plates", Int. J. Solids Struct., 14(6), 465-473. https://doi.org/10.1016/0020-7683(78)90011-2.
- Bert, C.W. and Francis, P.H. (1974), "Composite material mechanics", Struct. Mech., AIAA J., 12(9).1173-1186.
- Bhimaraddi, A. (1995), "Sandwich beam theory and the analysis of constrained layer damping", J. Sound Vib., 179(4), 591-602. https://doi.org/10.1006/jsvi.1995.0039.
- Chen, H., Song, H., Li, Y. and Safarpour, M. (2020), "Hygrothermal buckling analysis of polymer-CNT-fiber-laminated nanocomposite disk under uniform lateral pressure with the aid of GDQM", Eng. Comput., 1-25. https://doi.org/10.1007/s00366-020-01102-y.
- Cheraghbak, A., Dehkordi, M.B. and Golestanian, H. (2019), "Vibration analysis of sandwich beam with nanocompositefacesheets considering structural damping effects", Steel Compos. Struct., 32(6), 795-806. https://doi.org/10.12989/scs.2019.32.6.795.
- Demir, E. (2016), "A study on natural frequencies and damping ratios of composite beams with holes", Steel Compos. Struct., 21(6), 1211-1226. https://doi.org/10.12989/scs.2016.21.6.1211.
- Demir, E. (2017b), "Vibration and damping behaviors of symmetric layered functional graded sandwich beams", Struct. Eng. Mech., 62(6), 771-780. https://doi.org/10.12989/sem.2017.62.6.771.
- Dewangan, H.C. and Panda, S.K. (2020), "Numerical thermoelastic eigenfrequency prediction of damaged layered shell panel with concentric/eccentric cutout and corrugated (TD/TID) properties", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01199-1.
- Gibson, R.F. and Plunkett, R. (1977), "Dynamic stiffness and damping of fiber-reinforced composite materials", Shock Vib. Dig., 9-18. https://doi:10.1177/058310247700900205.
- Gibson, R.F. and Wilson, D.G. (1979), "Dynamic mechanical properties of fiber-reinforced composite materials", Shock Vib. Dig., 11(10), 3. https://doi.org/10.1177/058310247901101001
- Heidari, F., Taheri, K., Sheybani, M., Janghorban, M. and Tounsi, A. (2021), "On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes", Steel Compos. Struct., 38(5), 533-545. https://doi.org/10.12989/scs.2021.38.5.533.
- Hu, H., Belouettar, S. and Potier-Ferry, M. (2008), "Review and assessment of various theories for modeling sandwich composites", Compos. Struct., 84(3), 282-292. https://doi.org/10.1016/j.compstruct.2007.08.007.
- Hyer, M.W., Anderson, W.J. and Scott, R.A. (1976), "Non-linear vibrations of three-layer beams with viscoelastic cores I. Theory", J. Sound Vib., 46(1), 121-136. https://doi.org/10.1016/0022-460X(76)90822-1.
- Kapuria, S., Dumir, P.C. and Jain, N.K. (2004), "Assessment of zigzag theory for static loading, buckling, free and forced response of composite and sandwich beams", Compos. Struct., 64(3-4), 317-327. https://doi.org/10.1016/j.compstruct.2003.08.013.
- Keshav, V. and Patel, S.N. (2020), "Non-Linear dynamic pulse buckling of laminated composite curved panels", Struct. Eng. Mech., 73(2), 181-190. https://doi.org/10.12989/sem.2020.73.2.181.
- Kirchhoff, G.R. (1950), "Uber das gleichgewicht und die bewegung einer elastischen scheibe", 19(40), 51-88.
- Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A. (2017b), "Wave propagation of embedded viscoelastic FGCNTreinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci., 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039.
- Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Oskouei, A.N. (2017a), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin Wall. Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016.
- Kovac Jr, E.J., Anderson, W.J. and Scott, R.A. (1971), "Forced non-linear vibrations of a damped sandwich beam", J. Sound Vib., 17(1), 25-39. https://doi.org/10.1016/0022-460X(71)90131-3.
- Laib, S., Meftah, S.A., Youzera, H., Ziane, N. and Tounsi, A. (2021), "Vibration and damping characteristics of the masonry wall strengthened with bonded fibre composite patch with viscoelastic adhesive layer", Comput. Concrete., 27(3), 253-268. https://doi.org/10.12989/cac.2021.27.3.253.
- Matlab (2006), The MathWorksInc, Natick, MA.
- Melo, J.D.D. and Radford, D.W. (2003), "Viscoelastic characterization of transversely isotropic composite laminae", J. Compos. Mater., 37(2), 129-145. https://doi.org/10.1106/002199803028990.
- Moayedi, H., Ebrahimi, F., Habibi, M., Safarpour, H. and Foong, L.K. (2021), "Application of nonlocal strain-stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell", Eng. Comput., 37(4),3359-3374. https://doi.org/10.1007/s00366-020-01002-1.
- Naghdi, P.M. (1956), "A survey of recent progress in theory of elastic shells", Appl Mech Rev., 9, 365-388.
- Rao, M.K. and Desai, Y.M. (2004), "Analytical solutions for vibrations of laminated and sandwich plates using mixed theory", Compos. Struct., 63(3-4), 361-373. https://doi.org/10.1016/S0263-8223(03)00185-5.
- Rao, M.K., Scherbatiuk, K., Desai, Y.M. and Shah, A.H. (2004), "Natural vibrations of laminated and sandwich plates", J. Eng. Mech., 130(11), 1268-1278.
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719.
- Rikards, R. (1993), "Finite element analysis of vibration and damping of laminated composites", Compos. Struct., 24(3), 193-204. https://doi.org/10.1016/0263-8223(93)90213-A.
- Thai, C.H., Nguyen-Xuan, H., Nguyen-Thanh, N., Le, T.H., Nguyen-Thoi, T. and Rabczuk, T. (2012), "Static, free vibration, and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS-based isogeometric approach", Int. J. Numer. Meth. Eng., 91(6),571-603. https://doi.org/10.1002/nme.4282.
- Tanzadeh, H. and Amoushahi, H. (2020), "Analysis of laminated composite plates based on different shear deformation plate theories", Struct. Eng. Mech., 75(2), 247-269. https://doi.org/10.12989/sem.2020.75.2.247.
- Timoshenko, S.P. (1922), "On the transverse vibrations of bars of uniform cross-section", London, Edinburgh, Dublin Philos. Mag. J. Sci., 43(253), 125-131. https://doi.org/10.1080/14786442208633855.
- Belabed, Z., Selim, M. M., Slimani, O., Taibi, N., Tounsi, A. and Hussain, M. (2021), "An efficient higher order shear deformation theory for free vibration analysis of functionally graded shells", Steel Compos. Struct., 40(2), 307-321. https://doi.org/10.12989/scs.2021.40.2.307.
- Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.
- Wang, H., Yan, W. And Li, C. (2020), "Response of angle-ply laminated cylindrical shells with surface bonded piezoelectric layers", Struct. Eng. Mech., 76(5), 599-611. https://doi.org/10.12989/sem.2020.76.5.599.
- Whitney, J.M. and Sun, C.T. (1973), "A higher order theory for extensional motion of laminated composites", J. Sound Vib., 30(1), 85-97. https://doi.org/10.1016/S0022-460X(73)80052-5.
- Whitney, J.M. and Sun, C.T. (1974), "A refined theory for laminated anisotropic, cylindrical shells", J. Appl. Mech., 41, 47-60. https://doi.org/10.1115/1.3423312.
- Youzera, H., Meftah, S.A., Challamel, N. and Tounsi, A. (2012), "Nonlinear damping and forced vibration analysis of laminated composite beams", Compos. Part B: Eng., 43(3), 1147-1154. https://doi.org/10.1016/j.compositesb.2012.01.008.
- Youzera, H., Meftah, S.A. and Daya, E.M. (2017), "Superharmonic resonance of cross-ply laminates by the method of multiple scales", J. Comput. Nonlin. Dyn., 12(5). 054503. https://doi.org/10.1115/1.4036914.
- Youzera, H. and Meftah, S.A. (2017), "Nonlinear damping and forced vibration behaviour of sandwich beams with transverse normal stress", Compos. Struct., 179, 258-268. https://doi.org/10.1016/j.compstruct.2017.07.038.
- Youzera, H., Meftah, S.A., Selim, M.M. and Tounsi, A. (2021), "Finite element method for axial and bending coupling effect on free vibration response of functionally graded beams under thermal environment", Mech. Adv. Mater. Struct., 1-15. https://doi.org/10.1080/15376494.2021.1979140.
- Yu, T., Yin, S., Bui, T. Q., Xia, S., Tanaka, S. and Hirose, S. (2016), "NURBS-based isogeometric analysis of buckling and free vibration problems for laminated composites plates with complicated cutouts using a new simple FSDT theory and level set method", Thin-Walled Struct., 101, 141-156. https://doi.org/10.1016/j.tws.2015.12.008.
- Zinoviev, P.A. and Ermakov, Y.N. (1994). "Energy dissipation in compos. materials", CRC Press. https://doi.org/10.1201/9780203757529.