DOI QR코드

DOI QR Code

Shape effect on axially loaded CFDST columns

  • R, Manigandan (Department of Civil Engineering, Birla Institute of Technology and Science, Pilani (BITS Pilani)) ;
  • Kumar, Manoj (Department of Civil Engineering, Birla Institute of Technology and Science, Pilani (BITS Pilani))
  • Received : 2021.06.03
  • Accepted : 2022.06.06
  • Published : 2022.06.25

Abstract

Concrete-filled double skinned steel tubular (CFDST) columns have been used to construct modern structures such as tall buildings and bridges as well as infrastructures as they provide better, lesser weight, and greater stiffness in structural performance than conventional reinforced concrete or steel members. Different shapes of CFDST columns may be needed to satisfy the architectural and aesthetic criteria. In the study, three-dimensional FE simulations of circular and elliptical CFDST columns under axial compression were developed and verified through the experimental test data from the perspectives of full load-displacement histories, ultimate axial strengths, and failure modes. The verified FE models were used to investigate and compare the structural performance of CFDST columns with circular and elliptical cross-section shapes by evaluating the overall load-deformation curves, interaction stress-deformation responses, and composite actions of the column. At last, the accuracy of available design models in predicting the ultimate axial strengths of CFST columns were investigated. Research results showed that circular and elliptical CFDST column behaviors were generally similar. The overall structural performance of circular CFDST columns was relatively improved compared to the elliptical CFDST column.

Keywords

Acknowledgement

The authors would like to thank workshop operator Ramesh Das for his technical cooperation in performing the tests.

References

  1. ABAQUS (2014), Analysis User's Manual 6.14-EF, Dassault Systems Simulia Corp., Providence.
  2. American Concrete Institute (A.C.I). (2014), Building Code Requirements for Structural Concrete. American Concrete Institute.
  3. Ahmed, M., Liang, Q.Q., Patel, V.I. and Hadi, M.N.S. (2020), "Experimental and numerical investigations of eccentrically loaded rectangular concrete-filled double steel tubular columns", J. Construct. Steel Res., 167, 105949. https://doi.org/10.1016/j.engstruct.2019.109790.
  4. Alqawzai, S., Chen, K., Shen, L., Ding, M., Yang, B. and Elchalakani, M. (2020), "Behavior of octagonal concrete-filled double-skin steel tube stub columns under axial compression", J. Construct. Steel Res., 170, 106115. https://doi:10.1016/j.jcsr.2020.106115.
  5. Avci-Karatas, C. (2019), "Prediction of ultimate load capacity of concrete-filled steel tube columns using multivariate adaptive regression splines (MARS)", Steel Compos. Struct., 33(4), 583-594. https://doi: 10.12989/scs.2019.33.4.583.
  6. Ayough, P., Ibrahim, Z., Sulong, N.H.R. and Hsiao, P.C. (2021), "The effects of cross-sectional shapes on the axial performance of concrete-filled steel tube columns", J. Construct. Steel Res., 176, 106424. https://doi: 10.1016/j.jcsr.2020.106424.
  7. Chung, K.S., Kim, J.H., and Yoo, J.H. (2013), "Experimental and analytical investigation of high-strength concrete-filled steel tube square columns subjected to flexural loading", Steel Compos. Struct., 14(2), 133-153. https://doi:10.12989/scs.2013.14.2.133.
  8. Ci, J., Jia, H., Ahmed, M., Chen, S., Zhou, D. and Hou, L. (2021), "Experimental and numerical analysis of circular concrete-filled double steel tubular stub columns with inner square hollow section", Eng. Struct., 227(August 2020), 111400. https://doi:10.1016/j.engstruct.2020.111400.
  9. Cicekli, U., Voyiadjis, G.Z., and Abu Al-Rub, R.K. (2007), "A plasticity and anisotropic damage model for plain concrete", Int. J. Plasticity, 23(10-11), 1874-1900. https://doi:10.1016/j.ijplas.2007.03.006.
  10. Dai, X.H., Lam, D., Jamaluddin, N. and Ye, J. (2014,. "Numerical analysis of slender elliptical concrete filled columns under axial compression", Thin-Wall. Struct., 77, 26-35. https://doi:10.1016/j.tws.2013.11.015.
  11. Dai, X. and Lam, D. (2010), "Numerical modelling of the axial compressive behaviour of short concrete-filled elliptical steel columns", J. Construct. Steel Res., 66(7), 931-942. https://doi:10.1016/j.jcsr.2010.02.003.
  12. Dong, C. and Ho, J.C.M. (2013), "Improving interface bonding of double-skinned CFST columns", Mag. Concrete Res., 65(20), 1199-1211. https://doi:10.1680/macr.13.00041.
  13. Dong, J., Ma, H., Zou, C., Liu, Y. and Huang, C. (2019), "Finite element analysis and axial bearing capacity of steel reinforced recycled concrete filled square steel tube columns", Struct. Eng. Mech., 72(1), 805-822. https://doi:10.12989/sem.2019.72.1.043.
  14. Duarte, A.P.C., Silva, B.A., Silvestre, N., de Brito, J., Julio, E. and Castro, J.M. (2016), "Finite element modelling of short steel tubes filled with rubberized concrete", Compos. Struct. 150, 28-40. https://doi:10.1016/j.compstruct.2016.04.048.
  15. Elchalakani, M., Zhao, X.L. and Grzebieta, R. (2002), "Tests on concrete filled double-skin (CHS outer and SHS inner) composite short columns under axial compression", Thin-Wall. Struct., 40(5), 415-441. https://doi:10.1016/S02638231(02)00009-5.
  16. Eltobgy, H.H. (2013). "Structural design of steel fibre reinforced concrete in-filled steel circular columns", Steel Compos. Struct., 14(3), 267-282. https://doi:10.12989/scs.2013.14.3.267.
  17. Farajpourbonab, E. and Rafieioskoei, A. (2018), "Behavior of CFDST columns with octagon and polygon steel sections", J. Urban Environ. Eng., 12(2), 236-244. https://doi:10.4090/juee.2018.v12n2.236244.
  18. Grassl, P. and Jirasek, M. (2006), "Damage-plastic model for concrete failure", Int. J. Solids Struct., 43(22-23), 7166-7196. https://doi:10.1016/j.ijsolstr.2006.06.032.
  19. Guo, Z., Chen, Y., Wang, Y. and Jiang, M. (2020), "Experimental study on square concrete-filled double skin steel tubular short columns", Thin-Wall. Struct., 156(March), 107017. https://doi:10.1016/j.tws.2020.107017.
  20. Han, L.H., Zhao, X.L. and Tao, Z. (2001), "Tests and mechanics model for concrete-filled SHS stub columns, columns and beam-columns", Steel Compos. Struct., 1(1), 51-74. https://doi:10.12989/scs.2001.1.1.051.
  21. Han, L.H., Huang, H. and Zhao, X.L. (2009), "Analytical behaviour of concrete-filled double skin steel tubular (CFDST) beam-columns under cyclic loading", Thin-Wall. Struct., 47(6-7), 668-680. https://doi: 10.1016/j.tws.2008.11.008.
  22. Han, L.H., Ren, Q.X. and Li, W. (2011), "Tests on stub stainless steelconcretecarbon steel double-skin tubular (DST) columns", J. Construct. Steel Res., 67(3), 437-452. https://doi:10.1016/j.jcsr.2010.09.010.
  23. Han, L.H., Yao, G.H. and Tao, Z. (2007), "Performance of concrete-filled thin-walled steel tubes under pure torsion", Thin-Wall. Struct., 45(1), 24-36. https://doi:10.1016/j.tws.2007.01.008.
  24. Han, L.H., Yao, G.H. and Zhao, X.L. (2005), "Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC)", J. Construct. Steel Res., 61(9), 1241-1269. https://doi:10.1016/j.jcsr.2005.01.004.
  25. Hassanein, M.F., Elchalakani, M., Karrech, A., Patel, V.I, and Yang, B. (2018), "Behaviour of concrete-filled double-skin short columns under compression through finite element modelling: SHS outer and SHS inner tubes", Struct., 14(April), 358-375. https://doi:10.1016/j.istruc.2018.04.006.
  26. Hu, H.T., Huang, C.S., Wu, M.H. and Wu, Y.M. (2003), "Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect", J. Struct. Eng.. 129(10), 1322-1329. https://doi:10.1061/(ASCE)07339445(2003)129:10(1322).
  27. Hu, H.T. and Su, F.C. (2011), "Non-linear analysis of short concrete-filled double skin tube columns subjected to axial compressive forces", Marine Struct., 24(4), 319-337. https://doi:10.1016/j.marstruc.2011.05.001.
  28. Hu, H.T., Su, F.C. and Elchalakani, M. (2010), "Finite element analysis of CFT columns subjected to pure bending moment", Steel Compos. Struct., 10(5), 415-428. https://doi:10.12989/scs.2010.10.5.415.
  29. Huang, H., Han, L.H., Tao, Z. and Zhao, X.L. (2010), "Analytical behaviour of concrete-filled double skin steel tubular (CFDST) stub columns", J. Construct. Steel Res., 66(4), 542-555. https://doi:10.1016/j.jcsr.2009.09.014.
  30. Ipek, S., Erdogan, A. and Guneyisi, E.M. (2021), "Compressive behavior of concrete-filled double skin steel tubular short columns with the elliptical hollow section", J. Build. Eng., 38(January). https://doi:10.1016/j.jobe.2021.102200.
  31. Le Hoang, A. and Fehling, E. (2017), "Analysis of circular steel tube confined UHPC stub columns", Steel Compos. Struct., 23(6), 669-682. https://doi:10.12989/scs.2017.23.6.669.
  32. Li, D., Uy, B. and Patel, V.I. (2015), "Behaviour of demountable CFST column-column connections", The 2015 World Congress on Adavances in Structural Engineering and Mechanics (ASEM15), August 25-29.
  33. Liao, F.Y., Han, L.H., Tao, Z. and Rasmussen, K.J.R. (2017), "Experimental behavior of concrete-filled stainless steel tubular columns under cyclic lateral loading", J. Struct. Eng. (United States), 143(4), 1-15. https://doi: 10.1061/(ASCE)ST.1943-541X.0001705.
  34. Lai, M.H. and Ho, J.C.M. (2014), "Experimental and theoretical studies of confined HSCFST columns under uni-axial compression", Earthq. Struct., 7(4), 527-552. https://doi:10.12989/eas.2014.7.4.527.
  35. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A Plastic-Damage Model", Int. J. Solids Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4
  36. Mi, Y., Liu, Z., Wang, W., Yang, Y. and Wu, C. (2020), "Experimental study on residual axial bearing capacity of UHPFRC-filled steel tubes after lateral impact loading", Structures, 26(March), 549-561. https://doi:10.1016/j.istruc.2020.04.032.
  37. Muthukumar, G. and Kumar, M. (2014), "Failure criteria of concrete - A review", Comput. Concrete, 14(5), 503-525. https://doi: 10.12989/cac.2014.14.5.503.
  38. Pagoulatou, M., Sheehan, T., Dai, X.H. and Lam, D. (2014), "Finite element analysis on the capacity of circular concretefilled double-skin steel tubular (CFDST) stub columns", Eng. Struct., 72, 102-112. https://doi:10.1016/j.engstruct.2014.04.039.
  39. Ronagh, M. (2011), "Plastic hinge length of RC columns subjected to both far-fault and near-fault ground motions having forward directivity", Struct. Des. Tall Spec. Build., 24(July 2014), 421-439. https://doi:10.1002/tal.
  40. Shiming, C. and Huifeng, Z. (2012), "Numerical analysis of the axially loaded concrete filled steel tube columns with debonding separation at the steel-concrete interface", Steel Compos. Struct., 13(3), 277-293. https://doi:10.12989/scs.2012.13.3.277.
  41. Sulthana, U.M. and Jayachandran, S.A. (2018), "Investigations on global buckling behaviour of concrete-filled double-skinned steel tubular columns", 419-424. https://doi:10.4995/asccs2018.2018.7144.
  42. Tao, Y. and Chen, J.F. (2015), "Concrete damage plasticity model for modeling FRP-to-concrete bond behavior", J. Compos. Construct., 19(1), 04014026. https://doi:10.1061/(asce)cc.1943-5614.0000482.
  43. Tao, Z., Han, L.H. and Zhao, X.L. (2004), "Behaviour of concretefilled double skin (CHS inner and CHS outer) steel tubular stub columns and beam-columns", J. Construct. Steel Res., 60(8), 1129-1158. https://doi:10.1016/j.jcsr.2003.11.008.
  44. Tao, Z., Wang, Z.B. and Yu, Q. (2013), "Finite element modelling of concrete-filled steel stub columns under axial compression", J. Construct. Steel Res., 89, 121-131. https://doi:10.1016/j.jcsr.2013.07.001.
  45. Uy, B. (2001), "Strength of short concrete filled high strength steel box columns", J. Construct. Steel Res., 57(2), 113-134. https://doi: 10.1016/S0143-974X(00)00014-6.
  46. Vernardos, S. and Gantes, C. (2019), "Experimental behavior of concrete-filled double-skin steel tubular (CFDST) stub members under axial compression: A comparative review", Structures, 22(June), 383-404. https://doi:10.1016/j.istruc.2019.06.025.
  47. Wai-Fah C. (1982), Plasticity in Reinforced Concrete. McGraw-Hill, New York.
  48. Wang, F., Young, B. and Gardner, L. (2019), "Experimental Study of Square and Rectangular CFDST Sections with Stainless Steel Outer Tubes under Axial Compression", J. Struct. Eng., 145(11), 04019139. https://doi:10.1061/(asce)st.1943-541x.0002408.
  49. Yan, X.F. and Zhao, Y.G. (2021), "Experimental and numerical studies of circular sandwiched concrete axially loaded CFDST short columns", Eng. Struct., 230(December 2020), 111617. https://doi:10.1016/j.engstruct.2020.111617.
  50. Yang, J., Xu, H. and Peng, G. (2008). "Behavior of concrete-filled double skin steel tubular columns withoctagon section under axial compression", Front. Architect. Civil Eng. China, 2(3), 205-210. https://doi:10.1007/s11709-008-0035-5.
  51. Yang, Y.F., Han, L.H. and Sun, B.H. (2012), "Experimental behaviour of partially loaded concrete filled double-skin steel tube (CFDST) sections", J. Construct. Steel Res., 71, 63-73. https://doi:10.1016/j.jcsr.2011.11.005.
  52. Yu, Q., Tao, Z. and Wu, Y.X. (2008), "Experimental behaviour of high-performance concrete-filled steel tubular columns", Thin-Wall. Struct., https://doi: 10.1016/j.tws.2007.10.001.
  53. Zhang, D., Zhao, J. and Zhang, Y. (2018), "Experimental and Numerical Investigation of Concrete-Filled Double-Skin Steel Tubular Column for Steel Beam Joints", Adv. Mater. Sci. Eng., https://doi:10.1155/2018/6514025.
  54. Zhao, X.L., Grzebieta, R. and Elchalakani, M. (2002), "Tests of concrete-filled double skin CHS composite stub columns", Steel Compos. Struct., 2(2), 129-146. https://doi:10.12989/scs.2002.2.2.129.
  55. Zhao, X.L. and Grzebieta, R. (2002), "Strength and ductility of concrete filled double skin (SHS inner and SHS outer) tubes", Thin-Wall. Struct., 40(2), 199-213. https://doi:10.1016/S0263-8231(01)00060-X.