Plasma Uniformity Control Technology for Dry Etching (ICP Dry etcher) Equipment for Medium and Large Displays

중·대형 디스플레이용 건식 식각(ICP Dry etcher) 설비의 플라스마 균일도 제어 기술

  • Received : 2022.09.15
  • Accepted : 2022.09.22
  • Published : 2022.09.30

Abstract

The current display technology tends to be highly integrated with high resolution, the element size is gradually downsized, and the structure becomes complicated. Inductively coupled plasma (ICP) dry etcher of various types of etching equipment is a structure that places a large multi-divisional antenna source on the top lid, passes current to the Antenna, and generates plasma using the induced magnetic field generated at this time. However, in the case of a device of a large area size, a support that can withstand a load structurally is necessary, and when these support portions are applied, arrangement of antenna becomes difficult, which causes reduction in uniformity. As described above, the development of antenna source of a large area having a uniform plasma density on the whole surface is difficult to restrict hardware (H/W). As a solution to this problem, we confirmed the change in uniformity of plasma by applying two kinds of specific shape faraday shield(FICP) to the lower part of the large area upper lid antenna of 6 and 8th more than that generation size. In this thesis, we verify the faraday shield effect which can improve plasma uniformity control of ICP dry etcher equipment applied to medium and large displays.

Keywords

Acknowledgement

이 논문은 2022년도 한국산업기술평가관리원의 재원으로 소재부품개발사업의 지원을 받아 수행된 연구임(20018979).

References

  1. F. Mendoza, B. Sarette, D. McReynolds, B. Richardson, J. Holland, Semiconductor International., pp143, 1999.
  2. C. Y. Chang, S. M. Sze, ULSI technology New York: McGraw-Hill, pp329, 1996.
  3. J. L. Crowley, Solid State Technol., 35, pp94, 1992.
  4. P. W. Lee, D. Shaw, P. Gonzales, G. J. Collins, J. Vac. Sci. Technol. A, 13(3), pp871, 1995. https://doi.org/10.1116/1.579844
  5. M. H. Khater, L. J. Overzet, J. Vac. Sci. Technol. A, 19(3), pp785, 2001. https://doi.org/10.1116/1.1355763
  6. Y. Wu, M. A. Lieberman, Appl. Phys. Lett., 72, pp777, 1998. https://doi.org/10.1063/1.120890
  7. M. Kanoh, K. Suzuki, K. Tonotani, K. Aoki, M. Yamage, Jpn. J. Appl. Phys., 40, pp5419, 2001. https://doi.org/10.1143/JJAP.40.5419
  8. Y. Horiike, H. Okano, T. Yamazaki, H. Horie, Jpn. J. Appl. Phys., 20, ppL817, 1981. https://doi.org/10.1143/JJAP.20.L817
  9. I. Lin, D. C. Hinson, W. H. Class, R. L. Sandstrom, Appl. Phys. Lett., 44, pp185, 1984. https://doi.org/10.1063/1.94702
  10. Y. J. Lee, K. N. Kim, B. K. Song, G. Y. Yeom, Mater. Sci. Semicond. Process., 5, pp419, 2003. https://doi.org/10.1016/S1369-8001(02)00129-4
  11. J. Hopwood, Plasma Sources Sci. Technol., 3(4), pp.460-464, 1994. https://doi.org/10.1088/0963-0252/3/4/002
  12. L. J. Mahoney, A. E. Wendt, E. Barrios, C. J. Richards and J. L. Shohet, J. Appl. Phys., 76, pp.2041, 1994. https://doi.org/10.1063/1.357672
  13. L. G. Zhang, D. Z. Chen, D. Li, K. F. Liu, X. F. Li, R. M. Pan, M. W. Fan, Fusion Engineering and Design 103, pp74-80, 2016. https://doi.org/10.1016/j.fusengdes.2015.12.007
  14. I. P. Ganachev, M. Moriyama, D. Ogawa and K. Nakamura, 2016 Progress In Electromagnetic Research Symposium (PIERS), Shanghai, China, 8-11 August, 2016.