DOI QR코드

DOI QR Code

Fe(II)/Na2S2O8을 이용한 하수슬러지 탈수능 개선

Improvement of Sewage Sludge Dewaterability using Fe(II)/Na2S2O8

  • 한준혁 (국립한경대학교 건설환경공학부) ;
  • 남세용 (국립한경대학교 건설환경공학부)
  • Han, Jun-Hyuk (School of Civil & Environmental Engineering, Hankyong National University) ;
  • Nam, Se-Yong (School of Civil & Environmental Engineering, Hankyong National University)
  • 투고 : 2022.08.31
  • 심사 : 2022.09.23
  • 발행 : 2022.09.30

초록

Fe(II)/Na2S2O8을 이용하여 하수슬러지의 탈수능 개선 여부를 확인하고자 약품 주입량에 따른 탈수능을 비교하였다. 탈수능의 주요 지표로 STTF, SCST, 함수율, TS, VS를 분석하였으며 TB-EPS as carbohydrate 및 protein을 측정하여 EPS의 파쇄여부를 확인하였다. 실험한 Na2S2O8 농도 범위는 0.4~0.7 mmol.gVS였고, Fe(II)/Na2S2O8 몰비 범위는 0.5~0.7 mol/mol이었다. 실험결과, Fe(II)/Na2S2O8의 농도 및 몰비가 증가함에 따라 STTF는 초기 1.00에서 15.00까지 증가하였고, SCST는 1.00에서 4.51까지 증가하였다. 함수율은 82.6%까지 감소하였다. TB-EPS as carbohydrate 및 protein의 감소율은 각각 37.16% 및 57.34%까지 증가하였다. Na2S2O8 0.6 mmol/gVS, Fe(II)/Na2S2O8 0.6 mol/mol 조건에서 STTF, SCST 및 함수율은 각각 13.64, 4.19 및 83.1%로 주입량 대비 탈수능 개선효과가 높게 나타났다. 이는 Fe(II)에 의해 생성된 SO4- 라디칼이 EPS를 파쇄하여 EPS와의 결합된 수분과 세포수를 수용액으로 용출시켜 탈수능이 개선된 것으로 사료된다.

In order to investigate the degree of sewage sludge dewaterability using Fe(II)/Na2S2O8, STTF, SCST, water content, TS, VS, TB-EPS as carbohydrate and Protein were measured. The dosage of Na2S2O8 was varied from 0.4 to 0.7 mmol/gVS and molar ratio of Fe(II)/Na2S2O8 was varied from 0.5 to 0.7 mol/mol. According to the increase of the dosage of Na2S2O8 and Fe(II)/Na2S2O8 molar ratio, STTF and SCST increased from 1.00 to 15.00 and 4.51, respectively. Water content decreased to 82.6%. TB-EPS as carbohydrate and protein decreasing rate also increased to 37.16% and 57.34%, respectively. Especially, Na2S2O8 0.6 mmol/gVS and Fe(II)/Na2S2O8 0.6 mol/mol condition, water content dercreased to 83.1%, STTF and SCST increased to 13.64 and 4.19 which showed the cost effective improvement of dewaterability. It is considered that SO4- radical generated by Fe(II)/Na2S2O8 degraded EPS and converted bound water to free water.

키워드

참고문헌

  1. Ministry of Environment, "Sewer Statistics", (2020).
  2. Jeon, B. C. and Nam, S. Y., "The relation between sewage sludge solubilization and extracellular polymeric substances", Journal of the Korea Organic Resource Recycling Association, 27(4), pp. 43-49. (2019). https://doi.org/10.17137/KORRAE.2019.27.4.43
  3. Nam, S. Y., Kim, J. H. and Kim, S. H., "Enhanced Dewaterability of Sewage Sludge by a Natural Inorganic Conditioner", Korean Society of Environment Engineers, 34(10), pp. 651-655. (2012). https://doi.org/10.4491/KSEE.2012.34.10.651
  4. Liu, J., Yang, Q., Wang, D., Li, X., Zhong, Y., Li, X., Deng, Y., Wang, L., Yi, K. and Zeng, G., "Enhanced dewaterability of waste activated sludge by Fe(II)-activated peroxymonosulfate oxidation", Bioresource Technology, 206, pp. 134-140. (2016). https://doi.org/10.1016/j.biortech.2016.01.088
  5. Citeau, M., Larue, O. and Vorobiev, E., "Influence of salt, pH and polyelectrolyte on the pressure electrodewatering of sewage sludge", Water Research, 45, pp. 2167-2180. (2011). https://doi.org/10.1016/j.watres.2011.01.001
  6. To, V. H. P, Nguyen, T. V. and Bustamated, H., "Deleterious effects of soluble extracellular polymeric substances on polyacrylamide demand for conditioning of anaerobically digested sludge", Journal of Environmental Chemical Engineering, 7, p. 102941. (2019). https://doi.org/10.1016/j.jece.2019.102941
  7. Lee, J. S., Gunten, V. U. and Kim, J. H., "PersulfateBased Advanced Oxidation: Critical Assessment of Opportunities and Roadblocks", Environmental Science and Technology, 54, pp. 3064-3081. (2020). https://doi.org/10.1021/acs.est.9b07082
  8. Zhang, Q., Fang, Shiyu., Cheng, Xiaoshi., Wang, Feng., Zhang, L., Huang, W., Du, W., Fang, F., Cao, J. and Luo, J., "Persulfate-based strategy for promoted acesulfame removal during sludge anaerobic fermentation: Combined chemical and biological effects", Journal of Hazardous Materials, 434, p. 128922. (2022). https://doi.org/10.1016/j.jhazmat.2022.128922
  9. Liu, Jun., Yang, Qi., Wang, D., Li, X., Zhong, Y., Li, X., Deng, Y., Wang, K. Y. and Zeng G., "Enhanced dewaterability of waste activated sludge by Fe(II)-activated peroxymonosulfate oxidation", Bioresource Technology, 206, pp. 134-140. (2016). https://doi.org/10.1016/j.biortech.2016.01.088
  10. Guo, J., Yihan, G. Q., Yihua, C., He, Q., Zhou, H., Liu, J., Zou, C. and Chen, W., "Insight into sludge dewatering by advanced oxidation using persulfate as oxidant and Fe2+ as activator: Performance, mechanism and extracellular polymers and heavy metals behaviors", Journal of Environmental Management, 288, p. 112476. (2021).
  11. Li, H., Wen, Y., Cao, A., Huang, J., Zhou, Q. and Somasundaran, P., "The influence of additives (Ca2+, AL3+ and Fe3+) on the interaction energy and loosely bound extracellular polymeric substances(EPS) of activated sludge and their flocculation mechanism", Bioresource Technology, 114, pp. 188-198. (2012). https://doi.org/10.1016/j.biortech.2012.03.043