DOI QR코드

DOI QR Code

Hazy Particle Map 기반 실시간 처리 가능한 자동화 안개 제거방법의 하드웨어 구현

Hardware implementation of automated haze removal method capable of real-time processing based on Hazy Particle Map

  • Sim, Hwi-Bo (Dept. of Electronics Engineering, Dong-A University) ;
  • Kang, Bong-Soon (Dept. of Electronics Engineering, Dong-A University)
  • 투고 : 2022.08.26
  • 심사 : 2022.09.22
  • 발행 : 2022.09.30

초록

최근 자율주행 자동차를 구현하기 위해 카메라 영상을 통해 객체 및 차선을 인식하여 자율주행하는 영상처리 기술이 연구되고 있다. 안개는 카메라 촬영 영상의 가시성을 떨어뜨리기 때문에 자율주행 자동차 오작동의 원인이 된다. 이를 해결하기 위해 카메라에 실시간 처리가 가능한 안개 제거 기능을 적용하는 것이 필요하다. 따라서 본 논문에서는 성능이 우수한 Sim의 안개 제거방법을 실시간 처리가 가능한 하드웨어로 구현한다. 제안하는 하드웨어는 Verilog HDL을 사용하여 설계하였고, Xilinx사의 xc7z045-2ffg900을 Target device로 설정하여 FPGA 구현하였다. Xilinx Vivado 프로그램을 이용한 논리합성 결과 4K(4096×2160) 고해상도 환경에서 최대 동작 주파수 276.932MHz, 최대 처리 속도 31.279fps를 가짐으로써 실시간 처리 기준을 만족한다.

Recently, image processing technology for autonomous driving by recognizing objects and lanes through camera images to realize autonomous vehicles is being studied. Haze reduces the visibility of images captured by the camera and causes malfunctions of autonomous vehicles. To solve this, it is necessary to apply the haze removal function that can be processed in real time to the camera. Therefore, in this paper, the fog removal method of Sim with excellent performance is implemented with hardware capable of real-time processing. The proposed hardware was designed using Verilog HDL, and FPGA was implemented by setting Xilinx's xc7z045-2ffg900 as the target device. As a result of logic synthesis using Xilinx Vivado program, it has a maximum operating frequency of 276.932MHz and a maximum processing speed of 31.279fps in a 4K (4096×2160) high-resolution environment, thus satisfying the real-time processing standard.

키워드

과제정보

This paper was supported by research funds from Dong-A University.

참고문헌

  1. D. Ngo, G. D. Lee and B. Kang, "A 4K-Capable FPGA Implementation of Single Image Haze Removal Using Hazy Particle Maps," Applied Sciences, Vol.9, No.17, pp.3443-3457, 2019. DOI: 10.3390/app9173443
  2. D. Ngo, S. Lee, U. J. Kang, T. M. Ngo, G. D. Lee and B. Kang, "Adapting a Dehazing System to Haze Conditions by Piece-Wisely Linearizing a Depth Estimator," Applied Sciences, Vol.22, No.5, pp.1957-1981, 2022. DOI: 10.3390/s22051957
  3. D. Ngo, S. Lee, Q. H. Nguyen, T. M. Ngo, G. D. Lee and B. Kang, "Single Image Haze Removal from Image Enhancement Perspective for Real-Time Vision-Based Systems," Sensors, Vol.20, No.18, pp.5170-5190, 2020. DOI: 10.3390/s20185170
  4. K. He, J. Sun, and X. Tang, "Single Image Haze Removal Using Dark Channel Prior," EEE Transactions on Pattern Analysis and Machine Intelligence, Vol.33, No.12, pp.2341-2353, 2011. DOI: 10.1109/TPAMI.2010.168
  5. A. Levin, D. Lischinski and Y. Weiss, "A Closed-Form Solution to Natural Image Matting," in IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.30, No.2, pp.228-242, 2008. DOI: 10.1109/TPAMI.2007.1177
  6. G. J. Kim, S. Lee, and B. Kang, "Single Image Haze Removal Using Hazy Particle Maps," IEICE Trans. Fundam. Electron. Commun. Comput. Sci. Vol.E101-A, No.11, pp.1999-2002, 2018. DOI: 10.1587/transfun.E101.A.1999
  7. D. Ngo, G. D. Lee and B. Kang, "Haziness degree evaluator: A knowledge-driven approach for haze density estimation," Sensors, Vol.21, No.11, pp. 3896-3927, 2021. DOI: 10.3390/s21113896
  8. H. SIM and B. Kang "Hazy Particle Map-based automated fog removal method with Haziness Evaluator applied," Journal of Korea Multimedia Society, 'in press'
  9. S. G. Narasimhan and S. K. Nayar, "Vision and the Atmosphere," International Journal of Computer Vision, Vol.8, No.3, pp.233-254, 2002. DOI: 10.1023/A:1016328200723
  10. J. Tarel and N. Hautiere, "Fast visibility restoration from a single color or gray level image," 2009 IEEE 12th International onference on Computer Vision, pp. 2201-2208, 2009. DOI: 10.1109/ICCV.2009.5459251
  11. H. Cho, G. J. Kim, K. Jang, S. Lee and B. Kang, "Color Image Enhancement Based on Adaptive Nonlinear Curves of Luminance Features," J. Semicond. Technol. Sci, Vol.15, No.1, pp.60-67. 2015. DOI: 10.5573/JSTS.2015.15.1.060
  12. Z. Wang, A. C. Bovik, H. R. Sheikh, end E. P. Simoncelli, "Image Quality Assessment: from Error Visibility Tostructural Similarity," IEEE Transactions on Image Process. Vol.13, No.4, pp.600-612, 2014. DOI: 10.1109/TIP.2003.819861
  13. L. Zhang, X. Mou, and D. Zhang, "FSIM: A Feature Similarity Index for Image Quality Assessment," IEEE Transactions on Image Process. Vol.20, No.8, pp.2378-2386, 2011. DOI: 10.1109/TIP.2011.2109730
  14. H. Yeganeh and Z. Wang, "Objective Quality Assessment of Tone-Mapped Images," IEEE Transactions on Image Process. Vol.22, No.2, pp. 657-667, 2013. DOI: 10.1109/TIP.2012.2221725
  15. C. Ancuti, C. O. Ancuti, R. Timofte, and C. De Vleeschouwer, "I-HAZE: A Dehazing Benchmark with Real Hazyand Haze-Free Indoor Images," Advanced Concepts for Intelligent Vision Systems, pp.620-631, 2018. DOI: 10.48550/arXiv.1804.05091
  16. C. Ancuti, C. O. Ancuti and C. De Vleeschouwer, "D-HAZY: A dataset to evaluate quantitatively dehazing algorithms," In Proceedings of the IEEE International Conference on Image Processing (ICIP), pp.2226-2230, 2016. DOI: 10.1109/ICIP.2016.7532754