DOI QR코드

DOI QR Code

생체정보 진단을 위한 생체모사 계층구조 기반 피부 고점착 전자 패치 개발

Development of bio-inspired hierarchically-structured skin-adhesive electronic patch for bio-signal monitoring

  • 김다완 (성균관대학교 화학공학과)
  • Kim, Da Wan (Dept. of Chemical Engineering, Sungkyunkwan Univ)
  • 투고 : 2022.08.30
  • 심사 : 2022.09.09
  • 발행 : 2022.09.30

초록

다양한 의료 응용 분야에서 웨어러블 및 피부 부착형 전자 패치에 피부 표면의 높은 접착력과 내수성이 요구된다. 본 연구에서는 탄소 기반 전도성 고분자 복합 소재에 개구리 발바닥의 육각 채널와 문어 빨판의 흡착 구조 패턴을 모사한 신축성 있는 전자 패치를 보고한다. 개구리의 발바닥을 모사한 육각 채널 구조는 수분을 배수하며, 균열억제 효과를 통해 점착력을 향상 시키며, 문어 빨판을 모사한 흡착 구조는 젖은 표면에서 높은 점착력을 나타낸다. 또한 고점착 전자패치는 실리콘(max. 4.06 N/cm2), 피부 복제 표면(max. 1.84 N/cm2) 등 다양한 표면에 건조 및 젖은 조건에서 우수한 접착력을 가지고 있다. 고분자 매트릭스와 탄소 입자를 기반으로한 고분자 복합소재를 통해 제작된 고점착 전자 패치는 건조 및 습한 환경에서 심전도(ECG)을 안정적으로 감지할 수 있다. 이 연구에서 보여진 특성을 기반으로 제안된 전자 패치는 다양한 생체 신호의 진단을 위한 웨어러블 및 피부 부착 센서 디바이스를 구현하는 잠재적 응용 가능성을 제시한다.

High adhesion and water resistance of the skin surface are required for wearable and skin-attachable electronic patches in various medical applications. In this study, we report a stretchable electronic patch that mimics the drainable structure pattern of the hexagonal channels of frog's pads and the sucker of an octopus based on carbon-based conductive polymer composite materials. The hexagonal channel structure that mimics the pads of frogs drains water and improves adhesion through crack arresting effect, and the suction structure that mimics an octopus sucker shows high adhesion on wet surfaces. In addition, the high-adhesive electronic patch has excellent adhesion to various surfaces such as silicone wafer (max. 4.06 N/cm2) and skin replica surface (max. 1.84 N/cm2) in dry and wet conditions. The high skin-adhesive electronic patch made of a polymer composite material based on a polymer matrix and carbon particles can reliably detect electrocardiogram (ECG) in dry and humid environments. The proposed electronic patch presents potential applications for wearable and skin-attachable electronic devices for detecting various biosignals.

키워드

과제정보

본 논문은 성균관대학교 및 교육부, 한국연구재단의 4단계 두뇌한국21 사업 대학원혁신으로 지원된 연구임.

참고문헌

  1. H. Lee, T. K. Choi, Y. B. Lee, H. R. Cho, R. Ghaffari, L. Wang, H. J. Choi, T. D. Chung, N. Lu, T. Hyeon, "A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy." Nature Nanotechnology, Vol. 11, No. 6, pp. 566-572, March 2016. https://doi.org/10.1038/nnano.2016.38
  2. Z. L. Wang, J. Chen, L. Lin, "Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors" Energy Environmental Science, Vol. 8, No. 8, pp. 2250-2282, June 2015. https://doi.org/10.1039/C5EE01532D
  3. S. Y. Kim, S. Park, H. W. Park, D. H. Park, Y. Jeong, D. H. Kim, "Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli." Advanced materials, Vol. 27, No. 28, pp. 4178-4185, June 2015. https://doi.org/10.1002/adma.201501408
  4. C. Moon, "Charging of Sensor Network using Multiple Mobile Robots." The Journal of the Convergence on Culture Technology (JCCT), Vol. 7, No. 2, pp. 345-350, May 2021. https://doi.org/10.17703/JCCT.2021.7.2.345
  5. K. Nam, U. Kwon, S. Han, "A Study on the Effectiveness of a Robotics curriculum based on." International Journal of Advanced Culture Technology (IJACT), Vol. 7, No. 3, pp. 79-85, September 2019. https://doi.org/10.17703/IJACT.2019.7.3.79
  6. J. Du, S. Pei, L. Ma, H. M. Cheng, "25th anniversary article: carbon nanotube-and graphene based transparent conductive films for optoelectronic devices." Advanced materials, Vol. 26, No. 13, pp.1958-1991, March 2014. https://doi.org/10.1002/adma.201304135
  7. C. Pang, J. H. Koo, A. Nguyen, J. M. Caves, M. G. Kim, A. Chortos, K. Kim, P. J. Wang, J. B. H. Tok, Z. Bao, "Highly skin-conformal microhairy sensor for pulse signal amplification." Advanced materials, Vol. 27, No. 4, pp.634-640, October 2014. https://doi.org/10.1002/adma.201403807
  8. M. K. Kwak, H. E. Jeong, K. Y. Suh, "Rational design and enhanced biocompatibility of a dry adhesive medical skin patch." Advanced Materials, Vol. 23, No. 34 pp. 3949-3953, July 2011. https://doi.org/10.1002/adma.201101694
  9. S. Baik, J. Kim, H. J. Lee, T. H. Lee, C. Pang, "Highly adaptable and biocompatible octopus-like adhesive patches with meniscus-controlled unfoldable 3D microtips for underwater surface and hairy skin." Advanced Science, Vol. 5, No. 8, 201800100 p. 1-7, April 2018. https://doi.org/10.1002/advs.201800100
  10. S. Baik, H. J. Lee, D. W. Kim, J. W. Kim, Y. Lee, C. Pang "Bioinspired adhesive architectures: from skin patch to integrated bioelectronics." Advanced Materials, Vol. 31, No. 34, pp. 1-18, February 2019. https://doi.org/10.1002/adma.201803309
  11. C. S. Boland, U. Khan, G. Ryan, S. Barwich, R. Charifou, A. Harvey, C. Backes, Z. Li, M. S. Ferreira, M. E. Mobius, "Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites." Science, Vol. 354 No. 6317 pp. 1257-1260, December 2016. https://doi.org/10.1126/science.aag2879
  12. D. W. Kim, S. Baik, H. Min, S. Chun, H. J. Lee, K. H. Kim, J. Y. Lee, and C. Pang, "Highly permeable skin patch with conductive hierarchical architectures inspired by amphibians and octopi for omnidirectionally enhanced wet adhesion," Advanced Functional Materials, Vol. 29, No. 13, pp. 1-9, January 2019. https://doi.org/10.1002/adfm.201807614
  13. S. Baik, D. W. Kim, Y. Park, T.-J. Lee, S. H. Bhang, C. Pang, "A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi." Nature, Vol. 546, No.7658 pp. 396-400, June 2017. https://doi.org/10.1038/nature22382
  14. J. M. R. Bullock, "Biomechanics of the fibrillar adhesive system in insects." Ph.D Thesis, University of Cambridge, pp.1-150, October 2010. https://doi.org/10.17863/CAM.16395
  15. T. Kim, J. Park, J. Sohn, D. Cho, S. Jeon, Kim, "Bioinspired, highly stretchable, and conductive dry adhesives based on 1D-2D hybrid carbon nanocomposites for all-in-one ECG electrodes." ACS nano, Vol. 10, No. 4 4770-4778, March 2016. https://doi.org/10.1021/acsnano.6b01355