DOI QR코드

DOI QR Code

젖은 표면 파지용 로봇 그리퍼 응용을 위한 하이브리드 계면 구조 개발

Development of hybrid interfacial structure on wet surfaces for robotic gripper applications

  • 김다완 (성균관대학교 화학공학과)
  • Kim, Da Wan (Dept. of Chemical Engineering, Sungkyunkwan Univ)
  • 투고 : 2022.08.04
  • 심사 : 2022.09.09
  • 발행 : 2022.09.30

초록

연질 접착제에 대한 최근의 연구는 그들의 화학적 또는 기계적 구조가 살아있는 조직과 어떻게 강하게 상호작용하는지를 깊이 이해하고자 했다. 그 목적은 급성 또는 만성 질환 환자의 충족되지 않은 요구를 최적으로 해결하는 것이다. 정전기(수소 결합)와 기계적 상호 작용(모세관 보조 흡입 스트레스)을 모두 포함하는 시너지 접착은 조직에 대한 장기간의 불안정한 결합과 관련된 과제를 극복하는 데 효과적인 것으로 보인다. 본 연구에서는 화학 잔류물이 없는 접착의 정전적이고 기계적으로 시너지 메커니즘을 기반으로 한 로봇 그리퍼 인터페이스용 하이브리드 구조를 보고한다. 메커니즘을 추론하기 위해 하이브리드 구조를 기반으로 한 열역학적 모델을 분석하였다. 모델은 엘라스토머 구조에 내장된 하이드로젤의 열역학적으로 제어된 팽창이 습한 표면과의 지속가능한 접착력 향상과 박리 방향의 화학적 잔류물 없는 탈착력을 향상시킨다는 실험 결과를 뒷받침했다.

Recent research on soft adhesives has sought to understand in depth how their chemical or mechanical structures interact strongly with living tissues. The aim is to optimally address the unmet needs of patients with acute or chronic diseases. Synergy adhesion, which includes both electrostatic (hydrogen bonds) and mechanical interactions (capillary stress), appears to be effective in overcoming challenges related to long-term unstable bonds to wet surfaces. Here, we report electrostatic and mechanically synergistic mechanisms of adhesion without chemical residues. To infer the mechanism, a thermodynamic model based on custom combination adhesives has been proposed. The model supported experimental results that thermodynamically controlled swelling of hydrogels embedded in elastomeric structures improves biofluidic insensitive on-site adhesion to wet surfaces and improves detachment without chemical residues in the direction of peeling.

키워드

과제정보

본 논문은 성균관대학교 및 교육부, 한국연구재단의 4단계 두뇌한국21 사업 대학원혁신으로 지원된 연구임.

참고문헌

  1. C. Moon, "Charging of Sensor Network using Multiple Mobile Robots." The Journal of the Convergence on Culture Technology (JCCT), Vol. 7, No. 2, pp. 345-350, May 2021. https://doi.org/10.17703/JCCT.2021.7.2.345
  2. K. Nam, U. Kwon, S. Han, "A Study on the Effectiveness of a Robotics curriculum based on." International Journal of Advanced Culture Technology (IJACT), Vol. 7, No. 3, pp. 79-85, September 2019. https://doi.org/10.17703/IJACT.2019.7.3.79
  3. D.-S. Choi, T.-H. Kim, S.-H. Lee, C. Pang, J. W. Bae, and S.-Y. Kim, "Beyond Human Hand: Shape-Adaptive and Reversible Magnetorheological Elastomer-Based Robot Gripper Skin" ACS Appl. Mater. Interfaces, Vol. 12, No. 39, pp. 44147-44155, September 2020. https://doi.org/10.1021/acsami.0c11783
  4. L. Xue, B. Sanz, A. Luo, K. T. Turner, X. Wang, D. Tan, R. Zhang, H. Du, M. Steinhart, C. Mijangos, M. Guttmann, M. Kappl, and A. D. Campo, "Hybrid Surface Patterns Mimicking the Design of the Adhesive Toe Pad of Tree Frog", ACS Nano, Vol. 11, No. 10, pp. 9711-9719, September 2017. https://doi.org/10.1021/acsnano.7b04994
  5. Y. Chen, J. Meng, Z. Gu, X. Wan, L. Jiang, S. Wang, "Bioinspired Multiscale Wet Adhesive Surfaces: Structures and Controlled Adhesion", Advanced Functional Materials, Vol. 30, No. 5, pp. 1-21, November 2019. https://doi.org/10.1002/adfm.201905287
  6. D. W. Kim, S. Baik, H. Min, S. Chun, H. J. Lee, K. H. Kim, J. Y. Lee, and C. Pang, "Highly permeable skin patch with conductive hierarchical architectures inspired by amphibians and octopi for omnidirectionally enhanced wet adhesion," Advanced Functional Materials, Vol. 29, No. 13, pp. 1-9, January 2019. https://doi.org/10.1002/adfm.201807614
  7. L. Zhang, H. Chen, Y. Guo, Y. Wnag, Y. Jiang, D. Zhang, L. Ma, J. Luo, L. Jiang, "Micro-Nano Hierarchical Structure Enhanced Strong Wet Friction Surface Inspired by Tree Frogs", Advanced Science, Vol. 7, No. 20, pp. 1-11, August 2020. https://doi.org/10.1002/advs.202001125
  8. S. Baik, H. J. Lee, D. W. Kim, J. W. Kim, Y. Lee, C. Pang "Bioinspired adhesive architectures: from skin patch to integrated bioelectronics." Advanced Materials, Vol. 31, No. 34, pp. 1-18, February 2019. https://doi.org/10.1002/adma.201803309
  9. E. Song, J. Li, S. M. Won, W. Bai, J. A. Rogers, "Materials for flexible bioelectronic systems as chronic neural interfaces." Nature materials, Vol. 19, No. 6, pp. 590-603, May 2020. https://doi.org/10.1038/s41563-020-0679-7
  10. J. Li, A. D. Celiz, J. Yang, Q. Yang, I. Wamala, W. Whyte, B. R. Seo, N. V. Vasilyev, J. J. Vlassak, Z. Suo, D. J. Mooney, "Tough adhesives for diverse wet surfaces." Science, Vol. 357, No. 6349, pp. 378-381, July 2017. https://doi.org/10.1126/science.aah6362
  11. P, Cai, C. Wan, L. Pan, N. Matsuhisa, K. He, Z. Cui, W. Zhang, C. Li, J. Wang, Jing Yu, M. Wang, Y. Jiang, G. Chen, X. Chen, "Locally coupled electromechanical interfaces based on cytoadhesion-inspired hybrids to identify muscular excitation-contraction signatures." Nature communications, Vol. 11. No. 1, pp. 1-12, May 2020. https://doi.org/10.1038/s41467-020-15990-7
  12. J. Deng, H. Yuk, J. Wu, C. E. Varela, X. Chen, E. T. Roche, C. F. Guo, X. Zhao, "Electrical bioadhesive interface for bioelectronics." Nature Materials, Vol. 20, No. 2, pp. 229-236, September 2021. https://doi.org/10.1038/s41563-020-00814-2
  13. D. W. Kim, "Electrostatic-Mechanical Synergistic In Situ Multiscale Tissue Adhesion for Sustainable Residue-Free Bioelectronics Interfaces." Advanced Materials, Vol. 34 No. 5, pp. 1-11, February 2022. https://doi.org/10.1002/adma.202105338
  14. A. Majumder, A. Ghatak, A. Sharma, "Microfluidic Adhesion Induced by Subsurface Microstructures." Science, Vol. 318, No. 258, pp. 258-261, October 2007. https://doi.org/10.1126/science.1145839
  15. A. Ghatak, L. Mahadevan, and M. K. Chaudhury. "Measuring the work of adhesion between a soft confined film and a flexible plate." Langmuir, Vol. 21, No. 4, pp. 1277-1281, January 2005 https://doi.org/10.1021/la0484826