DOI QR코드

DOI QR Code

Anti-inflammatory and Antioxidative Effects of Lotus Root Extract in LPS-PG-Stimulated Human Gingival Fibroblast-1 Cells

치주염 원인균 LPS-PG로 유도된 인체 치은섬유아세포에서 연뿌리 추출물에 대한 항염증 및 항산화 효과

  • Lee, Young-Kyung (Nakdonggang National Institute of Biological Resources) ;
  • Kim, Chul Hwan (Nakdonggang National Institute of Biological Resources) ;
  • Jeong, Dae Won (Nakdonggang National Institute of Biological Resources) ;
  • Lee, Ki Won (Department of Occupational and Environmental Medicine, College of Medicine, Dong-A University) ;
  • Oh, Young Taek (Nakdonggang National Institute of Biological Resources) ;
  • Kim, Jeong Il (Department of Occupational and Environmental Medicine, College of Medicine, Dong-A University) ;
  • Jeong, Jin-Woo (Honam National Institute of Biological Resources)
  • 이영경 (국립낙동강생물자원관) ;
  • 김철환 (국립낙동강생물자원관) ;
  • 정대원 (국립낙동강생물자원관) ;
  • 이기원 (동아대학교 의과대학 직업환경의학교실) ;
  • 오영택 (국립낙동강생물자원관) ;
  • 김정일 (동아대학교 의과대학 직업환경의학교실) ;
  • 정진우 (국립호남권생물자원관)
  • Received : 2022.07.21
  • Accepted : 2022.08.03
  • Published : 2022.10.01

Abstract

Gingival inflammation is one of the main causes that can be related to various periodontal diseases. Human gingival fibroblast (HGF) is the major constituent in periodontal connective tissue and secretes various inflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), upon lipopolysaccharide stimulation. This study is aimed at investigating the anti-inflammatory and antioxidative activities of Lotus Root extract (LRE) in Porphyromonas gingivalis derived lipopolysaccharide (LPS-PG)-stimulated HGF-1 cells. The concentration of NO and PGE2, as well as their responsible enzymes, inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2), was analyzed by Griess reaction, ELISA, and western blot analysis. LPS-PG sharply elevated the production and protein expression of inflammatory mediators, which were significantly attenuated by LRE treatment in a dose-dependent manner. LRE treatment also suppressed activation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response gene 88 (MyD88) and nuclear factor-κB (NF-κB) in LPS-PG-stimulated HGF-1 cells. In addition, one of phase II enzyme, NAD(P)H quinone dehydrogenase (NQO)-1, and its transcription factor, Nuclear factor erythroid 2-related factor 2 (Nrf2), were significantly induced by LRE treatment. Consequently, these results suggest that LRE ameliorates LPS-PG-induced inflammatory responses by attenuating TLR4/MyD88-mediated NF-κB, and activating NQO-1/Nrf2 antioxidant response element signaling pathways in HGF-1 cells.

치주조직에 존재하는 주요한 세포의 한 형태인 인체 치은섬유아세포는 다양한 구강유해세균으로부터 염증이 유발되어지며, 그중 대표적으로 치주염 원인균인 P. gingivalis의 내독소인 LPS-PG로부터 염증성 자극에 반응하여 다양한 염증매개 물질을 분비한다. 본 연구에서는 치주염을 일으키는 주요한 원인균 중 하나인 P. gingivalis로 부터 분리한 LPS-PG를 이용하여 인체 치은섬유아세포주인 HGF-1 세포에 염증을 유도한 후 LRE에 대한 항염증 및 항산화 효과를 분석하였다. 실험 결과, LRE는 LPS-PG 유도에 따라 iNOS에 의한 NO 생성과 COX-2에 의한 PGE2와 같은 염증 매개 인자의 발현 및 생성 억제와 함께 염증성 싸이토카인(TNF-α, IL-1β및 IL-6)의 생성 또한 억제하였다. 신호전달계에서 염증성 전사인자의 발현 경로를 확인하기 위하여 TLR4/Myd88/NF-κB의 활성을 확인한 결과, LRE 처리에 따라 농도 의존적으로 억제되는 것을 확인하였다. 또한 산화 환원 효소로 항염증효과를 나타내는 것으로 알려진2상 효소 중 하나인 NQO-1과 이의 전사인자인 Nrf2를 분석 한 결과 LRE 처리에 의해 효소의 활성이 높아지는 것을 확인할 수 있었다. 결론적으로 LRE는 TLR4/Myd88/NF-κB 신호전달 경로를 억제하고 NQO1/Nrf2 활성을 유도함으로써 HGF-1 세포에서 LPS-PG에 의해 유도된 염증을 억제하는 것으로 사료되며, 향후 LRE는 식·의약품 소재 개발에서 치주질환 개선의 가능성이 있는 후보물질이 될 수 있을 것으로 사료된다.

Keywords

Acknowledgement

본 논문은 환경부 및 정부(농림축산식품부)의 재원으로 국립낙동강생물자원관(NNIBR202202110) 및 농림식품기술기획평가원(IPET121041021HD050)의 지원을 받아 수행된 연구이며, 이에 감사드립니다.

References

  1. Armitage, G.C. 1999. Development of a classification system for periodontal diseases and conditions. Ann. Periodontol. 4(1):1-6. https://doi.org/10.1902/annals.1999.4.1.1
  2. Bae, M.J., S.J. Kim, E.J. Ye, H.S. Nam and E.M. Park. 2008. Study on the chemical composition of lotus root and functional evaluation of fermented lotus root drink. J. Korean Soc. Food Cult. 23(2):222-227.
  3. Borsch, T. and W. Barthlott. 1983. Classification and distribution of the genus Nelumbo adans (Nelumbonaccae). Beitr. Biol. Plazen. 68:421-450.
  4. Cho, S.I. and H.W. Kim. 2003. Beneficial effect of Nodus neoumbinis nhizomatis extracts on cisplatin-induced kidney toxicity in rats. Korean J. Herbology 18:127-134.
  5. Feghali, C.A. and T.M. Wright. 1997. Cytokines in acute and chronic inflammation. Front. Biosci. 2:d12-26. https://doi.org/10.2741/A171
  6. Fujihara, M., M. Muroi, K. Tanamoto, T. Suzuki, H. Azuma and H. Ikeda. 2003. Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex. Pharmacol. Ther. 100:171-194. https://doi.org/10.1016/j.pharmthera.2003.08.003
  7. Graves, D.T., M. Oskoui and S. Volejnikova. 2001. Tumor necrosis factor modulates fibroblast apoptosis, PMN recruitment, and osteoclast formation in response to P. gingivalis infection. J. Dent. Res. 80(10):1875-1879. https://doi.org/10.1177/00220345010800100301
  8. Guha, M. and N. Mackman. 2001. LPS induction of gene expression in human monocytes. Cell. Signal. 13(2):85-94. https://doi.org/10.1016/S0898-6568(00)00149-2
  9. Hajishengallis, G. and R.J. Lamont. 2014. Breaking bad: manipulation of the host response by Porphyromonas gingivalis. Eur. J. Immunol. 44(2):328-338 https://doi.org/10.1002/eji.201344202
  10. Jang, Y.A., S.H. Park, B. Kim, J.Y. Park, Y.O. Jeoung and J.T. Lee. 2017. Effect of ethanol extract of Lotus Rhizome and node of Lotus Rhizome. Journal of the Korean Applied Science and Technology 34(3):657-665.
  11. Jeong, C.H., K.B. Son, J.H. Kim, S.K. Kang, E.Y. Park, K.I. Seo and K.H. Shim. 2010. Antioxidant and anticancer activities of lotus (Nelumbo nucifera) leaf and root. Korean J. Food Cook. Sci. 17(1):131-138.
  12. Kang, K.W., S.J. Le and S.G. Kim. 2005. Molecular mechanism of nrf2 activation by oxidative stress. Antioxid. Redox Signal. 7(11-12):1664-1673. https://doi.org/10.1089/ars.2005.7.1664
  13. Kim, C.H., Y.K. Lee, J.W. Jeong, B.S. Hwang, Y.T. Jeong, Y.T. Oh, P.Y. Cho and C.H. Kang. 2021. Anti-inflammatory effects of Hemistepta lyrata Bunge in LPS-stimulated RAW 264.7 cells through regulation of MAPK signaling pathway. Korean J. Plant Res. 34(1):23-30.
  14. Kim, H.J., T. Kim, W.Y. Kang, H. Baek, H.Y. Cheon, B.Y. Kim and D. Kim. 2010. Development of anti-wrinkle agent from Nelumbo nucifera root extract. Korean Chem. Eng. Res. 48(4):413-416.
  15. Ko, B.S., D.W. Jun, J.S. Jang, J.H. Kim and S. Park. 2006. Effect of Sasa Borealis and white lotus roots and leaves on insulin action and secretion in vivo. Korean J. Food Sci. Technol. 38:114-120.
  16. Kocgozlu, L., R. Elkaim, H. Tenenbaum and S. Werner. 2009. Variable cell responses to P. gingivalis lipopolysaccharide. J. Dent. Res. 88(8):741-745. https://doi.org/10.1177/0022034509341166
  17. Lee, J.S. and Y.J. Surh. 2005. Nrf 2 as a novel molecular target for chemoprevention. Cancer Lett. 224(2):171-184. https://doi.org/10.1016/j.canlet.2004.09.042
  18. Lee, J.J., J.O. Ha and M.Y. Lee. 2007. Antioxidaive activity of lotus root (Nelumbo nucifera G.) extracts. J. Life Sci. 17(9): 1237-1243. https://doi.org/10.5352/JLS.2007.17.9.1237
  19. Lee, J.J., S.E. Park and M.Y. Lee. 2006a. Effects of lotus root (Nelumbo nucifera G.) on lipid metabolism in rats with dietinduced hypercholesterolemia. Korean J. Food Preserv. 13: 634-642.
  20. Lee, J.J., S.E. Park, Y.M. Lee and M.Y. Lee. 2006b. Protective effects of lotus root (Nelumbo nucifera G.) on hepatic injury induced by alcohol in rats. Korean J. Food Preserv. 13:774-782.
  21. Lee, M.W., J.S. Kim, S.M. Cho, J.H. Kim and J.S. Lee. 2001. Anti-diabetic constituent from the node of lotus rhizome (Nelumbo nucifera Gaertn). Nat. Prod. Sci. 7(4):107-109.
  22. Li, L., W. Sun, T. Wu, R. Lu and B. Shi. 2017. Caffeic acid phenethyl ester attenuates lipopolysaccharide-stimulated proinflammatory responses in human gingival fibroblasts via NFκB and PI3K/Akt signaling pathway. Eur. J. Pharmacol. 794:61-68. https://doi.org/10.1016/j.ejphar.2016.11.003
  23. Lim, S.H., S.H. Kim, J.J. Park, Y.S. Park, S.K. Dhungana, I.D. Kim and D.H. Shin. 2020. Quality characteristics and antioxidant activities of lotus (Nelumbo nucifera Gaertn.) sprouts grown under different conditions. Korean J. Plant Res. 33(6): 666-674.
  24. Ling, Z.Q., B.J. Xie and E.L. Yang. 2005. Isolation, characterization, and determination of antioxidative of oligomeric procyanidins from the seedpod of Nelumbo nucifera Gaertn. J. Agric. Food Chem. 53:2441-2445. https://doi.org/10.1021/jf040325p
  25. Needleman, P. and P.C. Isakson. 1997. The discovery and function of COX-2. J. Rheumatol. Suppl. 49:6-8.
  26. Noda, D., T. Hamachi, K. Inoue and K. Maeda. 2007. Relationship between the presence of periodontopathic bacteria and the expressing of chemokine receptor mRNA in inflamed gingival tissue. J. Periodontal Res. 42(6):566-571. https://doi.org/10.1111/j.1600-0765.2007.00984.x
  27. Park, S.H., J.S. Hyun, E.H. Shin and J.H. Han. 2005a. Functional evalution of lotus root on serum lipid profile and health improvement. J. East Asian Soc. Diet. Life 15:257-263.
  28. Park, S.H., T.S. Hahm and J.H. Han. 2005b. Effects of ethanolextract of lotus root on the renal function and blood pressure of fructose-induced hypertensive rats. J. East Asian Soc. Diet. Life 15(2):165-170.
  29. Quan, J.Q. 2002. Cardiovascular pharmacological effects of bibenzylisoquinoline alkaloid derivatives. Acta. Pharmacol. Sin. 23:1086-1092.
  30. Que, F., L. Mao, C. Zhu and G. Xie. 2006. Antioxidant properties of chineses yellow wine, its concentrate and volatiles. LWTFood Sci. Technol. 39(2):111-117.
  31. Ren, K. and R. Torres. 2009. Role of interleukin-1β during pain and inflammation. Brain Res. Rev. 60(1):57-64. https://doi.org/10.1016/j.brainresrev.2008.12.020
  32. Ross, D., J.K. Kepa, S.L. Winski, H.D. Beall, A. Anwar and D. Siegel. 2000. NAD(P)H: quinone oxidoreductase 1 (NQO1): chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chem. Biol. Interact. 129(1-2):77-97. https://doi.org/10.1016/S0009-2797(00)00199-X
  33. Seo, H.J. and J.B. Jeong. 2020. Immune-enhancing effects of green lettuce (Lactuca sativa L.) extracts through the TLR4-MAPK/NF-κB signaling pathways in RAW264.7 macrophage cells. Korean J. Plant Res. 33(3):183-193.
  34. Sreenivasan, P.K. and A. Gaffar. 2008. Antibacterials as antiinflammatory agents: dual action agents for oral health. Antonie Van Leeuwenhoek 93(3):227-239. https://doi.org/10.1007/s10482-007-9197-8
  35. Wang, Y., Y. Vodovotz, P.K. Kim, R. Zamora and T.R. Billiar. 2002. Mechanisms of hepatoprotection by nitric oxide. Ann. N. Y. Acad. Sci. 962:415-422. https://doi.org/10.1111/j.1749-6632.2002.tb04085.x
  36. Won, H.Y., S.Y. Kim, E.J. Kim and D.W. Lee. 2004. Effects of Nodus Nelumbinis Rhizomatis extracts on sociopsychological stress in mice. J. of Oriental Neuropsychiatry 15(2):149-158.
  37. Xiao, J.H., J.H. Zhang., H.L. Chen., X.L. Feng and J.L. Wang. 2005. Inhibitory effects of isoliensinine on bleomycin-induced pulmonary fibrisis in mice. Planta. Med. 71:225-227. https://doi.org/10.1055/s-2005-837821
  38. Yang, H.L., S.W. Lin, C.C. Lee, K.Y. Kin, C.H. Liao, T.Y. Yang, H.M. Wang, H.C. Huang, C.R. Wu and Y.C. Hseu. 2015. Induction of nrf2-mediated genes by Antrodia salmonea inhibits ROS generation and inflammatory effects in lipopolysaccharide-stimulated RAW264.7 macrophages. Food Funct. 6(1):230-241.
  39. Yoon, Y.I., J.S. Hwang, M.Y. Ahn, Y.B. Lee, M.S. Han, T.W. Goo and E.Y. Yun. 2015. Inhibition of inflammation by Popillia flavosellata ethanol extract in LPS- induced RAW 264.7 macrophages. J. Life Sci. 25(9):993-999. https://doi.org/10.5352/JLS.2015.25.9.993