DOI QR코드

DOI QR Code

Growing Environment Characteristics and Vegetational Structure of Sageretia thea, Medicinal Plant

약용식물 상동나무 자생지 생육환경 특성과 식생구조

  • Son, Yonghwan (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Son, Ho Jun (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Park, Gwang Hun (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Lee, Dong Hwan (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Cho, Hyejung (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Lee, Sun-Young (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Kim, Hyun-Jun (Forest Medicinal Resources Research Center, National Institute of Forest Science)
  • 손용환 (국립산림과학원 산림약용자원연구소) ;
  • 손호준 (국립산림과학원 산림약용자원연구소) ;
  • 박광훈 (국립산림과학원 산림약용자원연구소) ;
  • 이동환 (국립산림과학원 산림약용자원연구소) ;
  • 조혜정 (국립산림과학원 산림약용자원연구소) ;
  • 이선영 (국립산림과학원 산림약용자원연구소) ;
  • 김현준 (국립산림과학원 산림약용자원연구소)
  • Received : 2022.07.27
  • Accepted : 2022.09.05
  • Published : 2022.10.01

Abstract

This study was conducted to figure out the environment factors including vegetation structure and soil characteristics in natural habitats of Sageretia thea, and offers the basic information for habitats conservation and proliferation. The natural habitats of Sageretia thea were located at altitudes between 0~370 m with inclinations ranged as 3~35°. Through the vegetation research, the dominant species of tree layers were found to be divided into four communities. Cornus macrophylla (Com. I), Pinus thunbergii - Cinnamomum camphora (Com. II), Machilus thunbergii (Com. III), and Pinus thunbergii (Com. IV). The Species diversity (H') was 1.397~1.455, evenness (J') was 0.972~0.986, and dominance (D) was found to be 0.014~0.028. As a result of the physicochemical characteristics of soils, habitats soil mainly consisted of sandy soil and sandy loam soil. The average soil pH was 5.28~5.98, electronic conductivity was 0.22~63 ds/m, soil organic matter was 13.33~19.33 cmol+/kg, Exchange cations were appeared in the order of Ca2+, Mg2+, K+, and Na+. The Ordination result showed that Correlation coefficient between communities and environmental factors were significantly correlated with 4 main factors altitude, electronic conductivity, cation exchange capacity, exchangeable Na+. As expected, The result of this study will be helpful information on the preservation and mass production for use.

본 연구는 국내에 자생하는 상동나무 4지역 15조사구를 대상으로 입지환경과 식생 구조를 분석하여 상동나무의 생육에 적합한 생물·비생물적 요소를 구명하여 합리적인 보존 및 증식에 관한 자료로 활용하고자 수행하였다. 상동나무 자생지는 온·난대 상록활엽수림에 속하며 해발고 0~370 m, 경사 3~35°로 확인되었다. 군집구조는 곰의말채나무, 곰솔-녹나무, 후박나무, 곰솔 군집으로 구분되었다. 종다양성지수는(H') 1.397~1.455, 균등도(J') 0.972~0.986으로 나타났으며, 우점도(D)는 0.014~0.028로 다양한 종이 경쟁 관계를 가지는 안정적인 임분으로 나타났다. 토양이화학성 분석 결과, 토성은 모래의 비율이 높은 사양토, 사질양토에서 자생하였고, 이화학적 특성은 pH 5.28~5.98로 약산성으로 나타났으며, 유기물함량(OM) 13.33~19.33 cmol+/kg, 전질소함량(TN) 0.34~0.97%, 유효인산(P2O5) 86.19~510.03 mg/kg, 전기전도도(EC) 0.22~63 ds/m, 양이온치환용량(CEC) 및 치환성양이온(Ex. C)은 Ca2+ > Mg2+ > K+ > Na+ 순으로 일반적인 산림토양 대비 비옥도가 높은 토양에서 자생하는 것으로 나타났다. NMS 분석 결과, 상동나무의 군집구조와 환경요인과의 상관관계는 해발고, 전기전도도(EC), 양이온치환용량(CEC), 치환성 Na+이 주요 요인으로 나타났다. 본 연구 결과는 상동나무의 자생지 보존과 산업화 활용을 위한 대량생산 연구에 유용한 정보로 활용이 기대된다.

Keywords

Acknowledgement

본 연구는 국립산림과학원 일반연구사업 "유용 산림약용자원의 이용 활성화를 위한 천연물 물질지도 작성 연구(II) (Project No. FP0400-2022-02-2022)"의 지원에 의해 이루어진 결과로 이에 감사드립니다.

References

  1. Ahn, K.S. 2017. The worldwide trend of using botanical drugs and strategies for developing global drugs. BMP Rep. 50(3): 111-116. https://doi.org/10.5483/BMBRep.2017.50.3.221
  2. Applequist, W.L., J.A. Brinckmann, A.B. Cunningham, R.E. Hart, M. Heinrich, D.R. Katerere and T. Van Andel. 2020. Scientists' warning on climate change and medicinal plants. Planta Med. 86(01):10-18. https://doi.org/10.1055/a-1041-3406
  3. Boo, J.Y. and J.S Kim. 2020. A study on the native environment and cutting propagation for the black-berry magnolia vine [Schisandra repanda (Siebold & Zucc.) Radlk] in Halla mountain. Korean J. Medicinal Crop. Sci. 28(5):354-359 (in Korean). https://doi.org/10.7783/KJMCS.2020.28.5.354
  4. Braun, B.J. 1964. Grundzuge der vegetationskunde 3. Auf. Springer-Verlag, NY (USA). pp. 1-865.
  5. Breman, E., D. Ballesteros, E. Castillo-Lorenzo, C. Cockel, J. Dickie, A. Faruk, K. O'Donnell, C.A. Offord, S. Pironon, S. Sharrock and T. Ulian. 2021. Plant diversity conservation challenges and prospects - the perspective of botanic gardens and the Millennium Seed Bank. Plants 10(11):2371. https://doi.org/10.3390/plants10112371
  6. Brower, J.E. and J.H. Zar. 1977. Field and Laboratory Methods for General Ecology. Wm. C. Brown Company, NY (USA). pp. 1-238.
  7. Cho, Y.C., J.K. Hong., H.J. Cho., K.H. Bae and J.S. Kim. 2011. Structure and understory species diversity of Pinus parvifloraTsuga Sieboldii forest in Ulleung island. J. Korean Soc. For. Sci. 100(1):34-41 (in Korean).
  8. Choo, G.C. 1992. Systematic studies of the family Rhamnaceae in Korea. Department of Forestry, Ph.D. Thesis, Konkuk Univ., Korea. pp. 22-70 (in Korean).
  9. Christophe, F.R., E. Robin, N. Signe, Z. Massimiliano, E.Z. Niklaus, B.P. Peter, V. Pascal, T. Wilfried and G. Antoine. 2009. Climate change and plant distribution: local models predict high elevation persistence. Global Change Biol. 15(6):1557-1569. https://doi.org/10.1111/j.1365-2486.2008.01766.x
  10. Chun, Y.M. 2007. Synecology and habitat environment of coastral sand dune vegetation in Uido (Island), Korea. Korean J. Environ. Biol. 25(1):56-65 (in Korean).
  11. Chung, J.M., S.H. Cho, Y.S. Kim, K.S. Kong, H.J Kim, C.H. Lee and H.J. Lee. 2017. Ethnobotany in Korea: The Traditional Knowledge and Use of Indigenous Plants. Korea National Arboretum, Pocheon, Korea. p. 754 (in Korean).
  12. Costello, C. and M. Ward. 2006. Search, bioprospecting and biodiversity conservation. J. Environ. Econ. Manag. 52(3): 615-626. https://doi.org/10.1016/j.jeem.2006.04.001
  13. Cox, G.W. 1972. Laboratory Manual of General Ecology. Wm. C. Brown Company, IA (USA). pp. 1-232.
  14. Curtis, J.T. and R.P. McIntosh. 1951. An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 9:161-166.
  15. David, B., J.L. Wolfender and A.D. Daniel. 2015. The pharmaceutical industry and natural products: historical status and new trends. Phytochem. Rev. 14:299-315. https://doi.org/10.1007/s11101-014-9367-z
  16. Eo, H.J., Y.H. Son, S.H. Park, G.H. Park, K.C. Lee and H.J. Son. 2021. Growth and physiological characteristics of containerized seedlings of Sageretia thea at different fertilization treatments. J. Korean Soc. For. Sci. 110(2):189-197 (in Korean).
  17. Eom, B.C. and J.W. Kim. 2020. A phytoclimatic review of warm-temperate vegetation zone of Korea. Korean J. Environ. Ecol. 53(2):195-207 (in Korean). https://doi.org/10.11614/KSL.2020.53.2.195
  18. Gwon, S.S., I.S. Hwang, W.G. Park and E.J. Cheong. 2019. Characteristics of natural habitats of rare species, Tofieldia nuda. Korean J. Environ. Ecol. 33(1):86-106 (in Korean). https://doi.org/10.13047/KJEE.2019.33.1.86
  19. Ha, M.L., C.K. Lee, S.G. Lee, H. Kim and B.H. Kim. 2021. The effects of acid depositions on japanese black pine (Pinus thunbergii) on major south coast islands. TJOKI 33(1):207-224 (in Korean).
  20. Hughes, L. 2000. Biological consequences of global warming: is the signal already apparent. Trends Ecol. Evol. 15:56-61. https://doi.org/10.1016/S0169-5347(99)01764-4
  21. IPCC. 2014. Summary for policymakers: In climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. In Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea and L.L. White (eds.), Contribution of Working Group II to the Fifth Assessment Report of the intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom. pp. 1-32.
  22. Kang, H.M., J.W. Kang, J.H. Kim, Y.S. Chan and S.G. Park. 2022. Monitoring the restoration of evergreen broad-leaved forests in the warm-temperate region (III). Korean J. Environ. Ecol. 36(1):87-101 (in Korean). https://doi.org/10.13047/KJEE.2022.36.1.87
  23. Kim, D.G. 2010. Native tree species of tolerance to saline soil and salt spray drift at the coastal forests in the West-Sea, Korea. Korean J. Environ. Ecol. 24(2):209-221 (in Korean).
  24. Kim, E.H. 2007. Ecological characteristics of Leontice microrhyncha community in Mt. Jumbong. Department of Life Science, MS Thesis, Catholic Univ., Korea. pp. 1-65 (in Korean).
  25. Kim, H.J. 2004. Studies on the medicinal resource plants on Jeju Island. Department of Life Science, Ph.D. Thesis, Jeju National Univ., Korea. pp. 5-25 (in Korean).
  26. Kim, H.N., G.H. Park, S.B. Park, J.D. Kim, H.J. Eo, H.J. Son, J.H. Song and J.B. Jeong. 2019a. Sageretia thea inhibits inflammation through suppression of NF-ĸB and MAPK and activation of Nrf2/HO-1 signaling pathways in RAW264.7 cells. Am. J. Chin. Med. 47(2):385-403. https://doi.org/10.1142/S0192415X19500198
  27. J.H. Song and J.B. Jeong. 2019b. Extracts from Sageretia thea reduce cell viability through inducing cyclin D1 proteasomal degradation and HO-1 expression in human colorectal cancer cells. BMC Complement. Altern. Med. 19:43. https://doi.org/10.1186/s12906-019-2453-4
  28. Kim, J.S. and T.Y. Kim. 2011. Woody Plants of Korean Peninsula. Dolbegae, Seoul, Korea. p. 688 (in Korean).
  29. Kim, N.Y., G.H. Bae, Y.S. Kim, H.B. Lee and W.G. Park. 2013. Habitat environment and cutting, seed propagation of rare plant Rhododendron micranthin Turcz. J. Korean Soc. For. Sci. 29(2):165-172 (in Korean).
  30. Kim, S.H., K.Y. Lee and E.S. Baik. 2010. Habitate environment blooming and fruiting characteristics for Schisandra nigra Max. selected populations of Jeju island in Korea. J. Apic. 25(1):45-51 (in Korean).
  31. Kim, Y.G., J.S Kim, K.Y. Lee and M.S. Kim. 2018. Growth environment and vegetation structure of Cephalotaxus koreana Nakai in South Korea natural habitats. Korean J. Plant Res. 31(4):384-395 (in Korean).
  32. Kira, T. 1948. On the altitudinal arrangement of climatic zones in Japan. Kanti-Nougaku 2:143-173.
  33. Korea Meteorological Administration. 2021. http://www.kma.go.kr.
  34. Korea National Arboretum. 2017. Checklist of Vascular Plants in Korea. Pocheon, Korea. pp. 3-1000 (in Korean).
  35. Korea National Arboretum. 2021. National Red List of Vascular Plants in Korea. Pocheon, Korea. p. 83 (in Korean).
  36. Kwon, H.J., J.H. Lee, M.Y. Kim, J.H. Lee and H.K. Song. 2011. Vegetation structure and soil properties of Ilex cornuta population in Jeju island. Korean J. Environ. Ecol. 25(1): 10-016 (in Korean).
  37. Lee, T.B. 2003a. Coloured Flora of Korea. Vol. I. Hyangmunsa Publishing Co., Seoul, Korea. pp. 15-914 (in Korean).
  38. Lee, T.B. 2003b. Coloured Flora of Korea. Vol. II. Hyangmunsa Publishing Co., Seoul, Korea. pp. 11-910 (in Korean).
  39. McCune, B. and M.J. Mefford. 2010. PC-ORD v. 6.22. MjM Software. Gleneden Beach, OR (USA).
  40. Melchior, H. 1964. A. Engler's Syllabus der Pflanzenfamilien Band II. Gebruder Borntraeger, Berlin, Germany. p. 666.
  41. Ministry of Land, Infrastructure and Transport. 2017. National Map of Korea. Suwon, Korea. pp. 251 (in Korean).
  42. Park, S.G., C.Y. Sung and H.M. Kang. 2021. The types of warm temperate forest and the degraded levels in the island area of the west and south coast. Korean J. Environ. Ecol. 35(6): 579-593 (in Korean). https://doi.org/10.13047/KJEE.2021.35.6.579
  43. Park, S.G., S.H. Choi and S.C. Lee. 2018. A review of vegetation succession in warm-temperate evergreen broad-leaved forests-focusing on Actinodaphne lancifolia community. Korean J. Environ. Ecol. 32(1):77-96 (in Korean). https://doi.org/10.13047/KJEE.2018.32.1.77
  44. Park, S.U., K.A. Ah, C.W. Seo and W.S. Kong. 2016. Potential impact of climate change on distribution of Hedera rhombea in the Korean Peninsula. J. Climate Change Res. 7(3):325-334 (in Korean). https://doi.org/10.15531/ksccr.2016.7.3.325
  45. Pielou, E.C. 1975. Ecological diversity. John Wiley and Sons Inc., NY (USA). pp. 1-165.
  46. Primack, R.B. 2004. A Primer of Conservation Biology (3rd ed.). Sinauer Associates Inc., ME (USA). p. 292.
  47. Pyo, S.J., Y.J. Park, S.I. Park, S.I. Lee, J.Y. Park and H.Y. Sohn. 2020. Evaluation of the anti-thrombosis activities of the aerial parts of Sageretia thea. J. Life Sci. 30(5):443-451.
  48. Shim, H.Y., S.G. Park, S.H. Choi, S.C. Lee, C.Y. Yu and C.Y. Sung. 2019. The characteristics of Cinnamomum japonicum community in Japan's special natural monument area. Korean J. Environ. Ecol. 33(1):52-63 (in Korean). https://doi.org/10.13047/KJEE.2019.33.1.52
  49. Shim, Y.J., Y.S. Park, R.H. Jang, Y.J. Yoon, S.R. Kim and S.H. Han. 2020. The development of habitat suitability index model of class I Endangered wildlife, Sedirea japonica. TJOKI 32(1):153-172 (in Korean).
  50. Shin, H.S., S.C. Lee, S.H. Choi and H.M. Kang. 2019. Ecological characteristic and vegetation structure of Pinus thunbergii community in coastal forest of Busan metropolitan city, Korea. Korean J. Environ. Ecol. 33(5):539-551 (in Korean). https://doi.org/10.13047/KJEE.2019.33.5.539
  51. Son, H.J., S.C. Kim, D.H. Lee, S.J. Kwon, W.G. Park and Y.S. Kim. 2016. Growth environment and vegetation structure of habitats of Acer tegmentosum Maxim. J. Agric. Life Sci. 50(3):69-80 (in Korean).
  52. Son, Y.H., S.H. Park, D.H. Jeong, H.J. Cho, H.J. Son and K.S. Jeon. 2021. Growing environment characteristics and vegetation structure of Lonicera harae, medicinal plant. Korean J. Plant Res. 34(4):297-310 (in Korean).
  53. Song, J.H. 2014. A study on characteristics of vegetation structure of the deciduous broad-leaved forest on Gyorae Gotjawal in Jeju island, Korea. Department of Landscape Architecture, MS Thesis, University of Seoul, Korea. pp. 29-102 (in Korean).
  54. Song, S.C., C.G. Song and J.S. Kim. 2014. Vegetation and habitat environment of Sageretia thea in Jeju Island. Korean J. Medicinal Crop Sci. 22(4):301-305 (in Korean). https://doi.org/10.7783/KJMCS.2014.22.4.301
  55. Song, S.C., C.G. Song and J.S. Kim. 2015. Characteristics of seed-germination and fruit for Sageretia thea in Jeju region. Korean J. Medicinal Crop. Sci. 23(1):8-12 (in Korean). https://doi.org/10.7783/KJMCS.2015.23.1.8
  56. Song, Y.C. and L.J. Da. 2016. Vegetation Structure and Function at Multiple Spatial, Temporal and Conceptual Scales. Part 2: Evergreen Broad-leaved Forest of East Asia. Springer International Publishing, Switzerland. p. 101.
  57. Sorenson, T. 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species species content and its application to analyses of the vegetation on Danish commons. Biol. Skr. 5(4):1-34.
  58. Sung, J.W., M.H. Yi, J.W. Yoon, G.S. Kim, H.T. Shin and Y.S. Kim. 2013. Growth environment and vegetation structure of native habitat of Corydalis cornupetala. Korean J. Environ. Ecol. 27(3):271-279 (in Korean).
  59. Townsend, C.R., M. Begon and J.L. Harper. 2008. Essentials of Ecology (3rd ed.). Oxford: Blackwell Publishing, NY (USA). pp. 1-593.
  60. Uyeki, H. 1941. On the northern limit zone of evergreen broadleaved trees in Korea. Acta Phytotaxon. Geobot. 10:89-93.
  61. Yoon, J.H., J.H. Kim, K.H. Oh and B.Y. Lee. 2011. Distributional change and climate condition of warm-temperate evergreen broad-leaved trees in Korea. Korean J. Environ. Ecol. 25(1): 047-056 (in Korean).
  62. Zimmermann, N.E., R. Jandl, M. Hanewinkel, K.G. Georges, C. Kolling, P. Gasparini, A. Breznikar, E.S. Meier, S. Normand, U. Ulmer, G.T. Thomas, H. Veit, M. Naumann, W. Falk, M.K. Karl, M. Rizzo, M. Skudnik and A. Psomas. 2013. Management Strategies to Adapt Alpine Space Forests to Climate Change Risks. IntechOpen, London, United Kingdom. pp. 37-48.