References
- Adeli, H. and Yeh, C. (1989), "Perceptron learning in engineering design", Comput. Aided Civil Infrastruct. Eng., 4, 247-256. https://doi.org/10.1111/j.1467-8667.1989.tb00026.x
- Adhikary, B.B. and Mutsuyoshi, H. (2006), "Prediction of shear strength of steel fiber RC beams using neural networks", Constr. Build. Mater., 20, 801-811. https://doi.org/10.1016/j.conbuildmat.2005.01.047
- Apostolopoulou, M., Asteris, P.G., Armaghani, D.J., Douvika, M.G., Lourenco, P.B., Cavaleri, L., Bakolas, A. and Moropoulou, A. (2020), "Mapping and holistic design of natural hydraulic lime mortars", Cement Concrete Res., 136, 106167. https://doi.org/10.1016/j.cemconres.2020.106167
- Armaghani, D.J. and Asteris, P.G. (2020), "A comparative study of ANN, and ANFIS models for the prediction of cement-based mortar materials compressive strength", Neural Comput. Applicat., 33(9), 4501-4532. https://doi.org/10.1007/s00521-020-05244-4
- Armaghani, D.J., Momeni, E. and Asteris, P.G. (2020), "Application of group method of data handling technique in assessing deformation of rock mass", Metaheur. Comput. Applicat., Int. J., 1(1), 1-18. http://doi.org/10.12989/mca.2020.1.1.001
- Asteris, P.G. and Kolovos, K.G. (2017), "Self-compacting concrete strength prediction using surrogate models", Neural Comput. Applicat., 31(1), 409-424. https://doi.org/10.1007/s00521-017-3007-7
- Asteris, P.G. and Mokos, V.G. (2020), "Concrete compressive strength using artificial neural networks", Neural Comput. Applicat., 32, 1807-11826. https://doi.org/10.1007/s00521-019-04663-2
- Asteris, P.G. and Plevris, V. (2016), "Anisotropic masonry failure criterion using artificial neural networks", Neural Comput. Applicat., 28(8), 2207-2229. https://doi.org/10.1007/s00521-016-2181-3
- Asteris, P.G., Tsaris, A.K., Cavaleri, L., Repapis, C.C., Papalou, A., Di Trapani, F. and Karypidis, D.F. (2016a), "Prediction of the fundamental period of infilled RC frame structures using artificial neural networks", Comput. Intell. Neurosci., 12, 5104907. [PubMed] https://doi.org/10.1155/2016/5104907
- Asteris, P.G., Kolovos, K.G., Douvika, M.G. and Roinos, K. (2016b), "Prediction of self-compacting concrete strength using artificial neural networks", Eur. J. Environ. Civil Eng., 20, s102-s122. https://doi.org/10.1080/19648189.2016.1246693
- Asteris, P.G., Roussis, P.C. and Douvika, M.G. (2017), "Feedforward neural network prediction of the mechanical properties of sandcrete materials", Sensors, 17(6), 1344. https://doi.org/10.3390/s17061344
- Asteris, P.G., Apostolopoulou, M., Armaghani, D.J., Cavaleri, L., Chountalas, A.T., Guney, D., Hajihassani, M., Hasanipanah, M., Khandelwal, M., Karamani, C., Koopialipoor, M., Kotsonis, E., Le, T-T., Lourenco, P.B., Ly, H-B., Moropoulou, A., Nguyen, H., Pham, B.T., Samui, P. and Zhou, J. (2020), "On the metaheuristic models for the prediction of cement-metakaolin mortars compressive strength", Metaheur. Comput. Applicat., Int. J., 1(1), 63-99. http://doi.org/10.12989/mca.2020.1.1.063
- Aulia, T.B. and Deutschmann, K. (1999), "Effect of mechanical properties of aggregate on the ductility of high performance concrete", LACER, 4, 133-147.
- Bache, H.H. (1981), "Densified cement/ultrafine particle based materials", Proceedings of the 2nd International Conference on Superplasticizers in Concrete, Ottawa, Canada.
- Bai, J., Wild, S., Ware, J.A. and Sabir, B.B. (2003), "Using neural networks to predict workability of concrete incorporating metakaolin, and fly ash", Adv. Eng. Softw., 34, 663-669. https://doi.org/10.1016/S0965-9978(03)00102-9
- Benaicha, M., Burtschell, Y. and Alaoui, A.H. (2016), "Prediction of compressive strength at early age of concrete - application of maturity", J. Build. Eng., 6, 119-125. https://doi.org/10.1016/j.jobe.2016.03.003
- Davies, D.E. and Alexander, M.G. (2012), "Properties of aggregate in concrete (Part 2)", Hippo Quarrie, Sandton, South Africa: Hippo Quarries Technical Publication; 1992. Fig. 9(a) SEM image of KM5 sample, and cement interface and (b) EDS images of KM5 sample, and cement.
- de Larrard, F. and Belloc, A. (1997), "The influence of aggregate on the compressive strength of normal, and high-strength concrete", ACI Mater. J., 94, 417-425.
- Dias, W.P.S. and Pooliyadda, S.P. (2001), "Neural networks for predicting properties of concretes with admixtures", Constr. Build. Mater., 15, 371-379. https://doi.org/10.1016/S0950-0618(01)00006-X
- Fausett, L. (1994), Fundamentals of Neural Networks: Architectures, Algorithms, and Applications, Prentice Hall, NJ, USA.
- Freeman, J.A. and Skapura, D.M. (1991), Neural Networks Algorithms, Applications, and Programming Techniques, Addison-Wesley Publishing.
- Galobardes, I., Cavalaro, S.H., Goodier, C.I., Austin, S. and Rueda, A. (2015), "Maturity method to predict the evolution of the properties of sprayed concrete", Constr. Build. Mater., 79, 357-369. https://doi.org/10.1016/j.conbuildmat.2014.12.038
- Garzon-Roca, J., Marco, C.O. and Adam, J.M. (2013a), "Compressive strength of masonry made of clay bricks, and cement mortar: Estimation based on neural networks, and fuzzy logic", Eng. Struct., 48, 21-27. https://doi.org/10.1016/j.engstruct.2012.09.029
- Garzon-Roca, J., Adam, J.M., Sandoval, C. and Roca, P. (2013b), "Estimation of the axial behaviour of masonry walls based on artificial neural networks", Comput. Struct., 125, 145-152. https://doi.org/10.1016/j.compstruc.2013.05.006
- Hakim, S.J.S., Noorzaei, J., Jaafar, M.S., Jameel, M. and Mohammadhassani, M. (2011), "Application of artificial neural networks to predict compressive strength of high-strength concrete", Int. J. Phys. Sci., 6, 975-981. https://doi.org/10.5897/IJPS11.023
- Haykin, S. (1994), Neural Networks: A Comprehensive Foundation, Prentice-Hall, NJ, USA.
- Hsu, K.L., Gupta, H.V. and Sorooshian, S. (1995), "Artificial neural network modeling of the rainfall-runoff process", Water Resour. Res., 31(10), 2517-2530. https://doi.org/10.1029/95WR01955
- Jin, N.J., Seung, I., Choi, Y.S. and Yeon, J. (2017), "Prediction of early-age compressive strength of epoxy resin concrete using the maturity method", Constr. Build. Mater., 152, 990-998. https://doi.org/10.1016/j.conbuildmat.2017.07.066
- Kaplan, M.F. (1986), "Ultrasonic pulse velocity, dynamic modulus of elasticity, poisson ratio, and strength of concrete made with thirteen different coarse aggregates", RILEM Bull., No. 1, New Series, pp. 17-28.
- Kasabov, N.K. (1996), Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering, MIT Press, Cambridge, MA, USA.
- Kasperkiewicz, J., Racz, J. and Dubrawski, A. (1995), "HPC strength prediction using artificial neural network", J. Comput. Civil Eng., 9, 279-284. https://doi.org/10.1061/(ASCE)0887-3801(1995)9:4(279)
- Kosmatka, S.H., Panarese, W.C. and Kerkhoff, B. (2002), Design, and control of concrete mixtures, Vol. 5420, pp. 60077-1083, Portland Cement Association, Skokie, IL, USA.
- Kumar, S. and Barai, S.V. (2010), "Neural networks modeling of shear strength of SFRC corbels without stirrups", Appl. Soft Comput., 10, 135-148. https://doi.org/10.1016/j.asoc.2009.06.012
- Lai, S. and Serra, M. (1997), "Concrete strength prediction by means of neural network", Constr. Build. Mater., 11, 93-98. https://doi.org/10.1016/S0950-0618(97)00007-X
- Lee, S.C. (2003), "Prediction of concrete strength using artificial neural networks", Eng. Struct., 25, 849-857. https://doi.org/10.1016/S0141-0296(03)00004-X
- Mazloom, M. and Yoosefi, M.M. (2013), "Predicting the indirect tensile strength of self-compacting concrete using artificial neural networks", Comput. Concrete, Int. J., 12(3), 285-301. https://doi.org/10.12989/cac.2013.12.3.285
- Mehta, P.K. and Monteiro, P.J. (2006), Concrete: microstructure, properties, and materials, (3rd Ed.), The McGraw-Hill, New York, USA.
- Neville, A.M. (1995a), Properties of concrete, (4th Ed.), Pitman, London, UK.
- Neville, A.M. (1995b), Properties of concrete, Addison-Wesley Longman, Essex, UK.
- Oreta, A.W. and Ongpeng, J. (2011), "Modeling the confined compressive strength of hybrid circular concrete columns using neural networks", Comput. Concrete, Int. J., 8(5), 597-616. https://doi.org/10.12989/cac.2011.8.5.597
- Oztas, A., Pala, M., Ozbay, E., Kanca, E., Caglar, N. and Bhatti, M.A. (2006), "Predicting the compressive strength, and slump of high-strength concrete using neural network", Constr. Build. Mater., 20, 769-775. https://doi.org/10.1016/j.conbuildmat.2005.01.054
- Ozturan, T. and Cecen, C. (1997), "Effect of coarse aggregate type on mechanical properties of concretes with different strength", Cement Concrete Res., 27, 165-170. https://doi.org/10.1016/S0008-8846(97)00006-9
- Parichatprecha, R. and Nimityongskul, P. (2009), "Analysis of durability of high performance concrete using artificial neural networks", Constr. Build. Mater., 23, 910-917. https://doi.org/10.1016/j.conbuildmat.2008.04.015
- Plevris, V. and Asteris, P.G. (2014), "Modeling the masonry failure surface under biaxial compressive stress using neural networks", Constr. Build. Mater., 55, 447-461. https://doi.org/10.1016/j.conbuildmat.2014.01.041
- Rumelhart, D.E. and MacClelland, J.L. (1986), Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1, MIT Press, Cambridge, MA, USA.
- Shah, S.P. (1993), "Recent trends in the science, and technology of concrete, concrete technology, new trends, industrial applications", Proceedings of the International RILEM Workshop, E& FN Spon., London, UK, pp. 1-18.
- Suziki, K. (2011), Artificial neural networks methodological advances, and biomedical applications, Edited Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia. ISBN: 978-953-307-243-2
- Topcu, I.B. and Saridemir, M. (2008), "Prediction of rubberized concrete properties using artificial neural network, and fuzzy logic", Constr. Build. Mater., 22, 532-540. https://doi.org/10.1016/j.conbuildmat.2006.11.007
- TS EN 12390-3 Testing hardened concrete-Part 3: (2010), Compressive strength of test specimens, Turkish Standardization Institute, Ankara, Turkey.
- Yang, K.H., Mun, J.S. and Cho, M.S. (2015), "Effect of curing temperature histories on the compressive strength development of high-strength concrete", Adv. Mater. Sci. Eng., 2015. https://doi.org/10.1155/2015/965471
- Yeh, I.C. (2008), "Modeling slump of concrete with fly ash and superplasticizer", Comput. Concrete, Int. J., 5(6), 559-572. https://doi.org/10.12989/cac.2008.5.6.559
- Yikici, T.A. and Chen, H.L.R. (2015), "Use of maturity method to estimate compressive strength of mass concrete", Constr. Build. Mater., 95, 802-812. https://doi.org/10.1016/j.conbuildmat.2015.07.026
- Yilmaz, M. and Tugrul, A. (2012), "The effects of different sandstone aggregates on concrete strength", Constr. Build. Mater., 35, 294-303. https://doi.org/10.1016/j.conbuildmat.2012.04.014