DOI QR코드

DOI QR Code

Maturation effect on strength of high-strength concretes which produced with different origin aggregates

  • Kaya, Mustafa (Aksaray University, Faculty of Engineering) ;
  • Komur, M. Aydin (Aksaray University, Faculty of Engineering) ;
  • Gursel, Ercin (Aksaray University, Faculty of Engineering)
  • Received : 2020.11.10
  • Accepted : 2022.08.12
  • Published : 2022.08.25

Abstract

This paper presents an application of the maturation effect on the strength of high-strength concrete which is produced with different origin aggregates. While investigating the maturation effect on HSC 384 specimens were prepared with 22 different origin aggregates. These prepared specimens were subjected to the standard compressive tests which were applied after curing for 2, 7, 28, and 56 days under appropriate conditions. The test results revealed that bright surface-low adherence behavior is valid in normal strength concretes, but is not as effective as expected in high-strength concretes. The application of artificial neural networks (ANNs) to predict 2, 7, 28, and 56 day compressive strength of HSC is also investigated in this paper. An ANN model is built, trained, and tested using the available test data gathered from experimental studies. The ANN model is found to predict 2, 7, 28, and 56 days of compressive strength of high-strength concrete well within the ranges of the input parameters considered. These comparisons show that ANNs have strong potential as a feasible tool for predicting the compressive strength of high-strength concrete within the range of the input parameters considered.

Keywords

References

  1. Adeli, H. and Yeh, C. (1989), "Perceptron learning in engineering design", Comput. Aided Civil Infrastruct. Eng., 4, 247-256. https://doi.org/10.1111/j.1467-8667.1989.tb00026.x
  2. Adhikary, B.B. and Mutsuyoshi, H. (2006), "Prediction of shear strength of steel fiber RC beams using neural networks", Constr. Build. Mater., 20, 801-811. https://doi.org/10.1016/j.conbuildmat.2005.01.047
  3. Apostolopoulou, M., Asteris, P.G., Armaghani, D.J., Douvika, M.G., Lourenco, P.B., Cavaleri, L., Bakolas, A. and Moropoulou, A. (2020), "Mapping and holistic design of natural hydraulic lime mortars", Cement Concrete Res., 136, 106167. https://doi.org/10.1016/j.cemconres.2020.106167
  4. Armaghani, D.J. and Asteris, P.G. (2020), "A comparative study of ANN, and ANFIS models for the prediction of cement-based mortar materials compressive strength", Neural Comput. Applicat., 33(9), 4501-4532. https://doi.org/10.1007/s00521-020-05244-4
  5. Armaghani, D.J., Momeni, E. and Asteris, P.G. (2020), "Application of group method of data handling technique in assessing deformation of rock mass", Metaheur. Comput. Applicat., Int. J., 1(1), 1-18. http://doi.org/10.12989/mca.2020.1.1.001
  6. Asteris, P.G. and Kolovos, K.G. (2017), "Self-compacting concrete strength prediction using surrogate models", Neural Comput. Applicat., 31(1), 409-424. https://doi.org/10.1007/s00521-017-3007-7
  7. Asteris, P.G. and Mokos, V.G. (2020), "Concrete compressive strength using artificial neural networks", Neural Comput. Applicat., 32, 1807-11826. https://doi.org/10.1007/s00521-019-04663-2
  8. Asteris, P.G. and Plevris, V. (2016), "Anisotropic masonry failure criterion using artificial neural networks", Neural Comput. Applicat., 28(8), 2207-2229. https://doi.org/10.1007/s00521-016-2181-3
  9. Asteris, P.G., Tsaris, A.K., Cavaleri, L., Repapis, C.C., Papalou, A., Di Trapani, F. and Karypidis, D.F. (2016a), "Prediction of the fundamental period of infilled RC frame structures using artificial neural networks", Comput. Intell. Neurosci., 12, 5104907. [PubMed] https://doi.org/10.1155/2016/5104907
  10. Asteris, P.G., Kolovos, K.G., Douvika, M.G. and Roinos, K. (2016b), "Prediction of self-compacting concrete strength using artificial neural networks", Eur. J. Environ. Civil Eng., 20, s102-s122. https://doi.org/10.1080/19648189.2016.1246693
  11. Asteris, P.G., Roussis, P.C. and Douvika, M.G. (2017), "Feedforward neural network prediction of the mechanical properties of sandcrete materials", Sensors, 17(6), 1344. https://doi.org/10.3390/s17061344
  12. Asteris, P.G., Apostolopoulou, M., Armaghani, D.J., Cavaleri, L., Chountalas, A.T., Guney, D., Hajihassani, M., Hasanipanah, M., Khandelwal, M., Karamani, C., Koopialipoor, M., Kotsonis, E., Le, T-T., Lourenco, P.B., Ly, H-B., Moropoulou, A., Nguyen, H., Pham, B.T., Samui, P. and Zhou, J. (2020), "On the metaheuristic models for the prediction of cement-metakaolin mortars compressive strength", Metaheur. Comput. Applicat., Int. J., 1(1), 63-99. http://doi.org/10.12989/mca.2020.1.1.063
  13. Aulia, T.B. and Deutschmann, K. (1999), "Effect of mechanical properties of aggregate on the ductility of high performance concrete", LACER, 4, 133-147.
  14. Bache, H.H. (1981), "Densified cement/ultrafine particle based materials", Proceedings of the 2nd International Conference on Superplasticizers in Concrete, Ottawa, Canada.
  15. Bai, J., Wild, S., Ware, J.A. and Sabir, B.B. (2003), "Using neural networks to predict workability of concrete incorporating metakaolin, and fly ash", Adv. Eng. Softw., 34, 663-669. https://doi.org/10.1016/S0965-9978(03)00102-9
  16. Benaicha, M., Burtschell, Y. and Alaoui, A.H. (2016), "Prediction of compressive strength at early age of concrete - application of maturity", J. Build. Eng., 6, 119-125. https://doi.org/10.1016/j.jobe.2016.03.003
  17. Davies, D.E. and Alexander, M.G. (2012), "Properties of aggregate in concrete (Part 2)", Hippo Quarrie, Sandton, South Africa: Hippo Quarries Technical Publication; 1992. Fig. 9(a) SEM image of KM5 sample, and cement interface and (b) EDS images of KM5 sample, and cement.
  18. de Larrard, F. and Belloc, A. (1997), "The influence of aggregate on the compressive strength of normal, and high-strength concrete", ACI Mater. J., 94, 417-425.
  19. Dias, W.P.S. and Pooliyadda, S.P. (2001), "Neural networks for predicting properties of concretes with admixtures", Constr. Build. Mater., 15, 371-379. https://doi.org/10.1016/S0950-0618(01)00006-X
  20. Fausett, L. (1994), Fundamentals of Neural Networks: Architectures, Algorithms, and Applications, Prentice Hall, NJ, USA.
  21. Freeman, J.A. and Skapura, D.M. (1991), Neural Networks Algorithms, Applications, and Programming Techniques, Addison-Wesley Publishing.
  22. Galobardes, I., Cavalaro, S.H., Goodier, C.I., Austin, S. and Rueda, A. (2015), "Maturity method to predict the evolution of the properties of sprayed concrete", Constr. Build. Mater., 79, 357-369. https://doi.org/10.1016/j.conbuildmat.2014.12.038
  23. Garzon-Roca, J., Marco, C.O. and Adam, J.M. (2013a), "Compressive strength of masonry made of clay bricks, and cement mortar: Estimation based on neural networks, and fuzzy logic", Eng. Struct., 48, 21-27. https://doi.org/10.1016/j.engstruct.2012.09.029
  24. Garzon-Roca, J., Adam, J.M., Sandoval, C. and Roca, P. (2013b), "Estimation of the axial behaviour of masonry walls based on artificial neural networks", Comput. Struct., 125, 145-152. https://doi.org/10.1016/j.compstruc.2013.05.006
  25. Hakim, S.J.S., Noorzaei, J., Jaafar, M.S., Jameel, M. and Mohammadhassani, M. (2011), "Application of artificial neural networks to predict compressive strength of high-strength concrete", Int. J. Phys. Sci., 6, 975-981. https://doi.org/10.5897/IJPS11.023
  26. Haykin, S. (1994), Neural Networks: A Comprehensive Foundation, Prentice-Hall, NJ, USA.
  27. Hsu, K.L., Gupta, H.V. and Sorooshian, S. (1995), "Artificial neural network modeling of the rainfall-runoff process", Water Resour. Res., 31(10), 2517-2530. https://doi.org/10.1029/95WR01955
  28. Jin, N.J., Seung, I., Choi, Y.S. and Yeon, J. (2017), "Prediction of early-age compressive strength of epoxy resin concrete using the maturity method", Constr. Build. Mater., 152, 990-998. https://doi.org/10.1016/j.conbuildmat.2017.07.066
  29. Kaplan, M.F. (1986), "Ultrasonic pulse velocity, dynamic modulus of elasticity, poisson ratio, and strength of concrete made with thirteen different coarse aggregates", RILEM Bull., No. 1, New Series, pp. 17-28.
  30. Kasabov, N.K. (1996), Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering, MIT Press, Cambridge, MA, USA.
  31. Kasperkiewicz, J., Racz, J. and Dubrawski, A. (1995), "HPC strength prediction using artificial neural network", J. Comput. Civil Eng., 9, 279-284. https://doi.org/10.1061/(ASCE)0887-3801(1995)9:4(279)
  32. Kosmatka, S.H., Panarese, W.C. and Kerkhoff, B. (2002), Design, and control of concrete mixtures, Vol. 5420, pp. 60077-1083, Portland Cement Association, Skokie, IL, USA.
  33. Kumar, S. and Barai, S.V. (2010), "Neural networks modeling of shear strength of SFRC corbels without stirrups", Appl. Soft Comput., 10, 135-148. https://doi.org/10.1016/j.asoc.2009.06.012
  34. Lai, S. and Serra, M. (1997), "Concrete strength prediction by means of neural network", Constr. Build. Mater., 11, 93-98. https://doi.org/10.1016/S0950-0618(97)00007-X
  35. Lee, S.C. (2003), "Prediction of concrete strength using artificial neural networks", Eng. Struct., 25, 849-857. https://doi.org/10.1016/S0141-0296(03)00004-X
  36. Mazloom, M. and Yoosefi, M.M. (2013), "Predicting the indirect tensile strength of self-compacting concrete using artificial neural networks", Comput. Concrete, Int. J., 12(3), 285-301. https://doi.org/10.12989/cac.2013.12.3.285
  37. Mehta, P.K. and Monteiro, P.J. (2006), Concrete: microstructure, properties, and materials, (3rd Ed.), The McGraw-Hill, New York, USA.
  38. Neville, A.M. (1995a), Properties of concrete, (4th Ed.), Pitman, London, UK.
  39. Neville, A.M. (1995b), Properties of concrete, Addison-Wesley Longman, Essex, UK.
  40. Oreta, A.W. and Ongpeng, J. (2011), "Modeling the confined compressive strength of hybrid circular concrete columns using neural networks", Comput. Concrete, Int. J., 8(5), 597-616. https://doi.org/10.12989/cac.2011.8.5.597
  41. Oztas, A., Pala, M., Ozbay, E., Kanca, E., Caglar, N. and Bhatti, M.A. (2006), "Predicting the compressive strength, and slump of high-strength concrete using neural network", Constr. Build. Mater., 20, 769-775. https://doi.org/10.1016/j.conbuildmat.2005.01.054
  42. Ozturan, T. and Cecen, C. (1997), "Effect of coarse aggregate type on mechanical properties of concretes with different strength", Cement Concrete Res., 27, 165-170. https://doi.org/10.1016/S0008-8846(97)00006-9
  43. Parichatprecha, R. and Nimityongskul, P. (2009), "Analysis of durability of high performance concrete using artificial neural networks", Constr. Build. Mater., 23, 910-917. https://doi.org/10.1016/j.conbuildmat.2008.04.015
  44. Plevris, V. and Asteris, P.G. (2014), "Modeling the masonry failure surface under biaxial compressive stress using neural networks", Constr. Build. Mater., 55, 447-461. https://doi.org/10.1016/j.conbuildmat.2014.01.041
  45. Rumelhart, D.E. and MacClelland, J.L. (1986), Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1, MIT Press, Cambridge, MA, USA.
  46. Shah, S.P. (1993), "Recent trends in the science, and technology of concrete, concrete technology, new trends, industrial applications", Proceedings of the International RILEM Workshop, E& FN Spon., London, UK, pp. 1-18.
  47. Suziki, K. (2011), Artificial neural networks methodological advances, and biomedical applications, Edited Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia. ISBN: 978-953-307-243-2
  48. Topcu, I.B. and Saridemir, M. (2008), "Prediction of rubberized concrete properties using artificial neural network, and fuzzy logic", Constr. Build. Mater., 22, 532-540. https://doi.org/10.1016/j.conbuildmat.2006.11.007
  49. TS EN 12390-3 Testing hardened concrete-Part 3: (2010), Compressive strength of test specimens, Turkish Standardization Institute, Ankara, Turkey.
  50. Yang, K.H., Mun, J.S. and Cho, M.S. (2015), "Effect of curing temperature histories on the compressive strength development of high-strength concrete", Adv. Mater. Sci. Eng., 2015. https://doi.org/10.1155/2015/965471
  51. Yeh, I.C. (2008), "Modeling slump of concrete with fly ash and superplasticizer", Comput. Concrete, Int. J., 5(6), 559-572. https://doi.org/10.12989/cac.2008.5.6.559
  52. Yikici, T.A. and Chen, H.L.R. (2015), "Use of maturity method to estimate compressive strength of mass concrete", Constr. Build. Mater., 95, 802-812. https://doi.org/10.1016/j.conbuildmat.2015.07.026
  53. Yilmaz, M. and Tugrul, A. (2012), "The effects of different sandstone aggregates on concrete strength", Constr. Build. Mater., 35, 294-303. https://doi.org/10.1016/j.conbuildmat.2012.04.014