DOI QR코드

DOI QR Code

Theoretical fabrication of Williamson nanoliquid over a stretchable surface

  • Sharif, Humaira (Department of Mathematics, Govt. College University Faisalabad) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Khadimallah, Mohamed Amine (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Ayed, Hamdi (Department of Civil Engineering, College of Engineering, King Khalid University) ;
  • Taj, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Bhutto, Javed Khan (Electrical Engineering Department, College of Engineering, King Khalid University) ;
  • Mahmoud, S.R. (GRC Department, Faculty of Applied Studies, King Abdulaziz University) ;
  • Iqbal, Zafer (Department of Mathematics, University of Sargodha) ;
  • Ahmad, Shabbir (Department of Mathematics, COMSATS University Islamabad, Lahore Campus) ;
  • Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
  • 투고 : 2020.06.25
  • 심사 : 2022.08.21
  • 발행 : 2022.08.25

초록

On the basis of fabrication, the utilization of nano material in numerous industrial and technological system, obtained the utmost significance in current decade. Therefore, the current investigation presents a theoretical disposition regarding the flow of electric conducting Williamson nanoliquid over a stretchable surface in the presence of the motile microorganism. The impact of thermal radiation and magnetic parameter are incorporated in the energy equation. The concentration field is modified by adding the influence of chemical reaction. Moreover, the splendid features of nanofluid are displayed by utilizing the thermophoresis and Brownian motion aspects. Compatible similarity transformation is imposed on the equations governing the problem to derive the dimensionless ordinary differential equations. The Homotopy analysis method has been implemented to find the analytic solution of the obtained differential equations. The implications of specific parameters on profiles of velocity, temperature, concentration and motile microorganism density are investigated graphically. Moreover, coefficient of skin friction, Nusselt number, Sherwood number and density of motile number are clarified in tabular forms. It is revealed that thermal radiation, thermophoresis and Brownian motion parameters are very effective for improvement of heat transfer. The reported investigation can be used in improving the heat transfer appliances and systems of solar energy.

키워드

과제정보

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University (KKU) for funding this work through the Research Group Program Under the Grant Number: (R.G.P.2/91/43).

참고문헌

  1. Alfven, H. (1942), "Existence of electromagnetic-hydrodynamic waves", Nature, 150(3805), 405-406. https://doi.org/10.1038/150405d0
  2. Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., Int. J., 6(6), 585-610. https://doi.org/10.12989/acc.2018.6.6.585
  3. Alkanhal, T.A., Sheikholeslami, M., Usman, M., Haq, R.U., Shafee, A., Al-Ahmadi, A.S. and Tlili, I. (2019), "Thermal management of MHD nanofluid within the porous medium enclosed in a wavy shaped cavity with square obstacle in the presence of radiation heat source", Int. J. Heat Mass Transfer, 139, 87-94. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.006
  4. Alzahrani, J., Vaidya, H., Prasad, K.V., Rajashekhar, C., Mahendra, D.L. and Tlili, I. (2022), "Micro-polar fluid flow over a unique form of vertical stretching sheet: Special emphasis to temperature-dependent properties", Case Stud. Thermal Eng., 34, 102037. https://doi.org/10.1016/j.csite.2022.102037
  5. Ayodeji, F., Tope, A. and Samuel, O. (2019), "Magneto-Hydrodynamics (MHD) Bioconvection Nanofluid Slip Flow over a Stretching Sheet with Microorganism Concentration and Bioconvection Peclet Number Effects", Am. J. Mech. Indust. Eng., 4(6), 86-95. https://doi.org/10.11648/j.ajmie.20190406.11
  6. Ayodeji, F., Tope, A. and Pele, O. (2020), "Magnetohydrodynamics (MHD) Bioconvection nanofluid slip flow over a stretching sheet with thermophoresis, viscous dissipation and brownian motion", Mach. Learn. Res., 4(4), 51. https://doi.org/10.11648/j.mlr.20190404.12
  7. Choi, S.U. and Eastman, J.A. (1995), Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29), Argonne National Lab., IL, USA.
  8. Demir, A.D. and Livaoglu, R. (2019), "The role of slenderness on the seismic behavior of ground-supported cylindrical silos", Adv. Concrete Constr., Int. J., 7(2), 65-74. https://doi.org/10.12989/acc.2019.7.2.065
  9. Gao, J., Liu, J., Yue, H., Zhao, Y., Tlili, I. and Karimipour, A. (2022), "Effects of various temperature and pressure initial conditions to predict the thermal conductivity and phase alteration duration of water based carbon hybrid nanofluids via MD approach", J. Molecul. Liquids, 351, 118654. https://doi.org/10.1016/j.molliq.2022.118654
  10. Gireesha, B.J., Mahanthesh, B. and Rashidi, M.M. (2015), "MHD boundary layer heat and mass transfer of a chemically reacting Casson fluid over a permeable stretching surface with nonuniform heat source/ sink", Int. J. Indust. Mathe., 7(3), 247-260.
  11. Hassan, A., Wahab, A., Qasim, M.A., Janjua, M.M., Ali, M.A., Ali, H.M., Jadoon, T.R., Ali, E., Raza, A. and Javaid, N. (2020), "Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materialsnanofluids system", Renew. Energy, 145, 282-293. https://doi.org/10.1016/j.renene.2019.05.130
  12. Hayat, T. and Mehmood, O.U. (2011), "Slip effects on MHD flow of third order fluid in a planar channel", Commun. Nonlinear Sci. Numer. Simul., 16(3), 1363-1377. https://doi.org/10.1016/j.cnsns.2010.06.034
  13. Hayat, T., Asad, S., Mustafa, M. and Alsaedi, A. (2015), "MHD stagnation-point flow of Jeffrey fluid over a convectively heated stretching sheet", Comput. Fluids, 108, 179-185. https://doi.org/10.1016/j.compfluid.2014.11.016
  14. Ibanez, G., Lopez, A., Lopez, I., Pantoja, J., Moreira, J. and Lastres, O. (2019), "Optimization of MHD nanofluid flow in a vertical microchannel with a porous medium, nonlinear radiation heat flux, slip flow and convective-radiative boundary conditions", J. Thermal Anal. Calorim., 135(6), 3401-3420. https://doi.org/10.1007/s10973-018-7558-3
  15. Ibrahim, W. and Gamachu, D. (2019), "Nonlinear convection flow of Williamson nanofluid past a radially stretching surface", AIP Adv., 9(8), 085026. https://doi.org/10.1063/1.5113688
  16. Jha, B.K. and Apere, C.A. (2013), "Unsteady MHD two-phase Couette flow of fluid-particle suspension", Appl. Mathe. Modell., 37(4), 1920-1931. https://doi.org/10.1016/j.apm.2012.04.056
  17. Kagimoto, H., Yasuda, Y. and Kawamura, M. (2015), "Mechanisms of ASR surface cracking in a massive concrete cylinder", Adv. Concrete Constr., Int. J., 3(1), 39-54. https://doi.org/10.12989/acc.2015.3.1.039
  18. Khan, W.A. and Pop, I. (2010), "Boundary-layer flow of a nanofluid past a stretching sheet", Int. J. Heat Mass Transfer, 53(11-12), 2477-2483. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032
  19. Khan, A., Ali, H.M., Nazir, R., Ali, R., Munir, A., Ahmad, B. and Ahmad, Z. (2019), "Experimental investigation of enhanced heat transfer of a car radiator using ZnO nanoparticles in H 2 O-ethylene glycol mixture", J. Thermal Anal. Calorim., 138(5), 3007-3021. https://doi.org/10.1007/s10973-019-08320-7
  20. Kumaran, V. and Ramanaiah. G. (1996), "A note on the flow over a stretching sheet", Acta Mecca, 116(1), 229-233. https://doi.org/10.35940/ijrte.c4861.098319
  21. Kuznetsov, A.V. and Nield, D.A. (2010), "Natural convective boundary-layer flow of a nanofluid past a vertical plate", Int. J. Thermal Sci., 49(2), 243-247. https://doi.org/10.1016/j.ijthermalsci.2009.07.015
  22. Liang, G. and Mudawar, I. (2019), "Review of single-phase and two-phase nanofluid heat transfer in macro-channels and microchannels", Int. J. Heat Mass Transfer, 136, 324-354. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.086
  23. Makinde, O.D. (2010), "Similarity solution of hydromagnetic heat and mass transfer over a vertical plate with a convective surface boundary condition", Int. J. Phys. Sci., 5(6), 700-710. http://www.academicjournals.org/IJPS
  24. Makinde, O.D. and Aziz, A. (2010), "MHD mixed convection from a vertical plate embedded in a porous medium with a convective boundary condition", Int. J. Thermal Sci., 49(9), 1813-1820. https://doi.org/10.1016/j.ijthermalsci.2010.05.015
  25. Makinde, O.D., Khan, W.A. and Khan, Z.H. (2013), "Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet", Int. J. Heat Mass Transfer, 62, 526-533. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.049
  26. Maleki, H., Safaei, M.R., Togun, H. and Dahari, M. (2019), "Heat transfer and fluid flow of pseudo-plastic nanofluid over a moving permeable plate with viscous dissipation and heat absorption/generation", J. Thermal Anal. Calorim., 135(3), 1643-1654. https://doi.org/10.1007/s10973-018-7559-2
  27. Mesbah, H.A. and Benzaid, R. (2017), "Damage-based stressstrain model of RC cylinders wrapped with CFRP composites", Adv. Concrete Constr., Int. J., 5(5), 539-561. https://doi.org/10.12989/acc.2017.5.5.539
  28. Mustafa, M., Hina, S., Hayat, T. and Alsaedi, A. (2013), "Slip effects on the peristaltic motion of nanofluid in a channel with wall properties", J. Heat Transfer, 135(4). https://doi.org/10.1115/1.4023038
  29. Mustafa, M., Khan, J.A., Hayat, T. and Alsaedi, A. (2015), "Sakiadis flow of Maxwell fluid considering magnetic field and convective boundary conditions", Aip Adv., 5(2), 027106. https://doi.org/10.1063/1.4907927
  30. Nadeem, S., Hussain, M. and Naz, M. (2010), "MHD stagnation flow of a micropolar fluid through a porous medium", Meccanica, 45(6), 869-880. https://doi.org/10.1007/s11012-010-9297-9
  31. Nasiri, H., Jamalabadi, M.Y.A., Sadeghi, R., Safaei, M.R., Nguyen, T.K. and Shadloo, M.S. (2019), "A smoothed particle hydrodynamics approach for numerical simulation of nano-fluid flows", J. Thermal Anal. Calorim., 135(3), 1733-1741. https://doi.org/10.1007/s10973-018-7022-4
  32. Nazari, S., Ellahi, R., Sarafraz, M.M., Safaei, M., Asgari, A. and Akbari, O.A. (2019), "Numerical study on mixed convection of a non-Newtonian nanofluid with porous media in a two liddriven square cavity", J. Thermal Anal. Calorim., 1-25. https://doi.org/10.1007/s10973-019-08841-1
  33. Pramuanjaroenkij, A., Tongkratoke, A. and Kakac, S. (2018), "Numerical study of mixing thermal conductivity models for nanofluid heat transfer enhancement", J. Eng. Phys. Thermophys., 91(1), 104-114. https://doi.org/10.1007/s10891-018-1724-0
  34. Qi, X., Sidi, M.O., Tlili, I., Ibrahim, T.K., Elkotb, M.A., El- Shorbagy, M.A. and Li, Z. (2022), "Optimization and sensitivity analysis of extended surfaces during melting and freezing of phase changing materials in cylindrical Lithium-ion battery cooling", J. Energy Storage, 51, 104545. https://doi.org/10.1016/j.est.2022.104545
  35. Rashidi, S., Javadi, P. and Esfahani, J.A. (2019), "Second law of thermodynamics analysis for nanofluid turbulent flow inside a solar heater with the ribbed absorber plate", J. Thermal Anal. Calorim., 135(1), 551-563. https://doi.org/10.1007/s10973-018-7164-4
  36. Razi, S.M., Soid, S.K., Aziz, A.S.A., Adli, N. and Ali, Z.M. (2019), "Williamson nanofluid flow over a stretching sheet with varied wall thickness and slip effects", In: Journal of Physics: Conference Series, Vol. 1366, No. 1, p. 012007. https://doi.org/10.1088/1742-6596/1366/1/012007
  37. Samadvand, H. and Dehestani, M. (2020), "A stress-function variational approach toward CFRP-concrete interfacial stresses in bonded joints", Adv. Concrete Constr., Int. J., 9(1), 43-54. https://doi.org/10.12989/acc.2020.9.1.043
  38. Sheikholeslami, M., Gerdroodbary, MB., Moradi, R., Shafee, A. and Li, Z. (2019a), "Application of Neural Network for estimation of heat transfer treatment of Al2O3-H2O nanofluid through a channel", Comput. Methods Appl. Mech. Eng., 344, 1-12. https://doi.org/10.1016/j.cma.2018.09.025
  39. Sheikholeslami, M., Mehryan, S.A.M., Shafee, A. and Sheremet, M.A. (2019b), "Variable magnetic forces impact on magnetizable hybrid nanofluid heat transfer through a circular cavity", J. Molecular Liquids, 277, 388-396. https://doi.org/10.1016/j.molliq.2018.12.104
  40. Siddiqa, S., Begum, N., Saleem, S., Hossain, M.A. and Gorla, R.S.R. (2016), "Numerical solutions of nanofluid bioconvection due to gyrotactic microorganisms along a vertical wavy cone", Int. J. Heat Mass Transfer, 101, 608-613. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.076
  41. Szilagyi, I.M., Santala, E., Heikkila, M., Kemell, M., Nikitin, T., Khriachtchev, L., Rasanen, M., Ritala, M. and Leskela, M. (2011), "Thermal study on electrospun polyvinylpyrrolidone/ammonium metatungstate nanofibers: optimising the annealing conditions for obtaining WO3 nanofibers", J. Thermal Anal. Calorim., 105(1), 73. https://doi.org/10.1007/s10973-011-1631-5
  42. Tlili, I. and Alharbi, T. (2022), "Investigation into the effect of changing the size of the air quality and stream to the trombe wall for two different arrangements of rectangular blocks of phase change material in this wall", J. Build. Eng., 52, 104328. https://doi.org/10.1016/j.jobe.2022.104328
  43. Tlili, I., Sajadi, S.M., Baleanu, D. and Ghaemi, F. (2022), "Flat sheet direct contact membrane distillation study to decrease the energy demand for solar desalination purposes", Sustain. Energy Technol. Assessm., 52, 102100. https://doi.org/10.1016/j.seta.2022.102100
  44. Ullah, A., Shah, Z., Kumam, P., Ayaz, M., Islam, S. and Jameel, M. (2019), "Viscoelastic MHD nanofluid thin film flow over an unsteady vertical stretching sheet with entropy generation", Processes, 7(5), 262. https://doi.org/10.3390/pr7050262
  45. Williamson, R.V. (1929), "The flow of pseudoplastic materials", Indust. Eng. Chem., 21(11), 1108-1111. https://doi.org/10.1021/ie5023
  46. Zhang, J., Sajadi, S.M., Chen, Y., Tlili, I. and Fagiry, M.A. (2022), "Effects of Al2O3 and TiO2 nanoparticles in order to reduce the energy demand in the conventional buildings by integrating the solar collectors and phase change materials", Sustain. Energy Technol. Assessm., 52, 102114. https://doi.org/10.1016/j.seta.2022.102114