Acknowledgement
본 논문은 산업통상자원부 지식서비스산업핵심기술개발사업으로 지원된 연구결과입니다. (20015152, 빅데이터 가공 및 공급 자동화를 기반한 통합 스몰 데이터 분석 기술과 비대면 시장조사 시스템 융합 기술 개발)
References
- 김민정, 조윤호. (2015). 빅데이터 기반 추천시스템 구현을 위한 다중 프로파일 앙상블 기법, 지능정보연구, 21(4), 93-110. https://doi.org/10.13088/JIIS.2015.21.4.093
- 박종진. (2022). 넷플릭스 "韓 콘텐츠 이미 세계적" 올해 투자액 8000 억원 전망. 전자신문. https://www.etnews.com/20220119000185
- 박호연, & 김경재. (2021). BERT 기반 감성분석을 이용한 추천시스템. 지능정보연구, 27(2), 1-15. https://doi.org/10.13088/JIIS.2021.27.2.001
- 최성이, 현윤진, & 김남규. (2015). 사용자관심 이슈 분석을 통한 추천시스템 성능 향상 방안. 지능정보연구, 21(3), 101-116. https://doi.org/10.13088/JIIS.2015.21.3.101
- Burke, R. (2002), Hybrid recommender systems : Survey and experiments, User modeling and user-adapted interaction, 12(4), 331-370. https://doi.org/10.1023/A:1021240730564
- Burke, R. (2007), Hybrid web recommender systems, In The adaptive web, 377-408.
- Cheng, H. T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., ... & Shah, H. (2016, September). Wide & deep learning for recommender systems. In Proceedings of the 1st workshop on deep learning for recommender systems (pp. 7-10).
- Das, M., De Francisci Morales, G., Gionis, A., &Weber, I. (2013), Learning to question : Leveraging user preferences for shopping advice, In Proceedings o f the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, 203-211.
- Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
- Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.
- Goldberg, D., Nichols, D., Oki, B. M., and Terry, D. (1992), Using collaborative filterin g to weave an information tapestry, Communications of the ACM, 35(12), 61-70. https://doi.org/10.1145/138859.138867
- Hariri, N., Mobasher, B., Burke, R., & Zheng, Y. (2011, January). Context-aware recommendation based on review mining. In ITWP@ IJCAI.
- Hatamizadeh, A., Yin, H., Kautz, J. & Molchanov, P. (2022). Global Context Vision Transformers, arXiv preprint arXiv:2206.09959.
- He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
- He, R., & McAuley, J. (2016, February). VBPR: visual bayesian personalized ranking from implicit feedback. In Proceedings of the AAAI conference on artificial intelligence (Vol. 30, No. 1).
- He, X., Du, X., Wang, X., Tian, F., Tang, J., & Chua, T. S. (2018). Outer product-based neural collaborative filtering. arXiv preprint arXiv:1808.03912.
- He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T. S. (2017, April). Neural collaborative filtering. In Proceedings of the 26th international conference on world wide web (pp. 173-182).
- Kang, W. C., & McAuley, J. (2018, November). Self-attentive sequential recommendation. In 2018 IEEE international conference on data mining (ICDM) (pp. 197-206). IEEE.
- Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung, J., Gelly, S., & Houlsby, N. (2020, August). Big transfer (bit): General visual representation learning. In European conference on computer vision (pp. 491-507). Springer, Cham.
- Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25.
- Kulkarni, S., & Rodd, S. F. (2020). Context Aware Recommendation Systems: A review of the state of the art techniques. Computer Science Review, 37, 100255. https://doi.org/10.1016/j.cosrev.2020.100255
- LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4), 541-551. https://doi.org/10.1162/neco.1989.1.4.541
- Li Y., Mao, H., Girshick, R., & He, K. (2022). Exploring Plain Vision Transformer Backbones for Object Detection, arXiv preprint arXiv: 2203.16527.
- Rendle, S. (2010, December). Factorization machines. In 2010 IEEE International conference on data mining (pp. 995-1000). IEEE.
- Sun, F., Liu, J., Wu, J., Pei, C., Lin, X., Ou, W., & Jiang, P. (2019, November). BERT4Rec: Sequential recommendation with bidirectional encoder representations from transformer. In Proceedings of the 28th ACM international conference on information and knowledge management (pp. 1441-1450).
- Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9).
- Touvron, H., Vedaldi, A., Douze, M., & Jegou, H. (2019). Fixing the train-test resolution discrepancy. Advances in neural information processing systems, 32.
- Wu, Y. H. and Chen, A. L. (2000), Index structures of user profiles for efficien t web page filtering services, In 2012 IEEE 32nd International Conference on Distributed Computing Systems, 644-644.
- Xie, Y., Zhou, P., & Kim, S. (2022). Decoupled Side Information Fusion for Sequential Recommendation. arXiv preprint arXiv:2204. 11046.
- Xie, Y., Zhou, P., & Kim, S. (2022). Decoupled Side Information Fusion for Sequential Recommendation. arXiv preprint arXiv:2204. 11046.
- Yuan, X., Duan, D., Tong, L., Shi, L., & Zhang, C. (2021, July). ICAI-SR: Item Categorical Attribute Integrated Sequential Recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1687-1691).
- Zhang, T., Zhao, P., Liu, Y., Sheng, V. S., Xu, J., Wang, D., ... & Zhou, X. (2019, August). Feature-levelDeeper Self-Attention Network for Sequential Recommendation. In IJCAI (pp. 4320-4326).
- Zhou, K., Wang, H., Zhao, W. X., Zhu, Y., Wang, S., Zhang, F., ... & Wen, J. R. (2020, October). S3-rec: Self-supervised learning for sequential recommendation with mutual information maximization. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 1893-1902).