DOI QR코드

DOI QR Code

Tryptophan-derived Alkaloids from Hedera rhombea Fruits and Their Butyrylcholinesterase Inhibitory Activity

  • Ha, Manh Tuan (College of Pharmacy, Drug Research and Development Center, Daegu Catholic University) ;
  • Park, Se Eun (Department of Food and Life Science, Pukyong National University) ;
  • Kim, Jeong Ah (College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University) ;
  • Woo, Mi Hee (College of Pharmacy, Drug Research and Development Center, Daegu Catholic University) ;
  • Choi, Jae Sue (Department of Food and Life Science, Pukyong National University) ;
  • Min, Byung Sun (College of Pharmacy, Drug Research and Development Center, Daegu Catholic University)
  • Received : 2022.04.28
  • Accepted : 2022.08.23
  • Published : 2022.09.30

Abstract

Alzheimer's disease (AD) is the most common age-related neurodegenerative disease in industrialized countries. It is estimated that about 47 million people living with dementia and the number of cases will be tripled by 2050. However, the exact mechanism of AD is not known, and full therapy has still not been found. Various tryptophan-derived alkaloids have been reported as promising agents for the treatment of AD. In the present study, a series of tryptophan-derived alkaloids were isolated and characterized from the methanol extract of Hedera rhombea fruit. Based on the analysis of their observed and reported spectroscopic data, their structures were identified as N-[4'-hydroxy-(E)-cinnamoyl]-L-tryptophan (1), N-[3',4'-dihydroxy-(E)-cinnamoyl]-L-tryptophan (2), N-[4'-hydroxy-(E)-cinnamoyl]-L-tryptophan methyl ester (3), and N-[3',4'-dihydroxy-(E)-cinnamoyl]-L-tryptophan methyl ester (4). These compounds were screened for anti-Alzheimer activity via their inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes in vitro. As a result, compounds 3 and 4 showed moderate BChE inhibition with IC50 values of 86.9 and 78.4 μM, respectively, compared to those of the positive control [berberine (IC50 = 11.5 μM)]. However, all four compounds did not show significant inhibition of the AChE enzyme. This is the first time, the AChE and BChE inhibitory activities of these tryptophan-derived alkaloids were investigated and reported.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (2021R1A2C2011940), Korea.

References

  1. Orhan, I.; Sener, B.; Choudhary, M.; Khalid, A. J. Ethnopharmacol. 2004, 91, 57-60.
  2. Mezeiova, E.; Hrabinova, M.; Hepnarova, V.; Jun, D.; Janockova, J.; Muckova, L.; Prchal, L.; Kristofikova, Z.; Kucera, T.; Gorecki, L.; Chalupova, K.; Kunes, J.; Hroudova, J.; Soukup, O.; Korabecny, J. Bioorg. Med. Chem. Lett. 2021, 43, 128100. https://doi.org/10.1016/j.bmcl.2021.128100
  3. Maitre, M.; Klein, C.; Patte-Mensah, C.; Mensah-Nyagan, A. G. Prog. Neurobiol. 2020, 190, 101800.
  4. Khaw, K. Y.; Murugaiyah, V.; Khairuddean, M.; Tan, W. N. Nat. Prod. Sci. 2018, 24, 88-92. https://doi.org/10.20307/nps.2018.24.2.88
  5. Heo, J. H.; Eom, B. H.; Ryu, H. W.; Kang, M. G.; Park, J. E.; Kim, D. Y.; Kim, J. H.; Park, D.; Oh, S. R.; Kim, H. Sci. Rep. 2020, 10, 21695.
  6. Aguzzi, A.; O'connor, T. Nat. Rev. Drug Discov. 2010, 9, 237-248. https://doi.org/10.1038/nrd3050
  7. Hung, T. M.; Thuong, P. T.; Nhan, N. T.; Mai, N. T. T.; Quan, T. L.; Choi, J. S.; Woo, M. H.; Min, B. S.; Bae, K.;H. Nat. Prod. Sci. 2011, 17, 108-112.
  8. Yamazoe, S.; Hasegawa, K.; Shigemori, H. Phytochemistry. 2007, 68, 1706-1711. https://doi.org/10.1016/j.phytochem.2007.03.036
  9. Kim, K. S.; Choi, Y. H.; Lee, I. R.; Kwon, B. M.; Lee, S. H.. Arch. Pharm. Res. 1997, 20, 191-193.
  10. Ha, M. T.; Lee, T. H.; Kim, C. S.; Prajapati, R.; Kim, J. A.; Choi, J. S.; Min, B. S. Phytochemistry 2022, 197, 113100. https://doi.org/10.1016/j.phytochem.2022.113100
  11. Chalupova, K.; Korabecny, J.; Bartolini, M.; Monti, B.; Lamba, D.; Caliandro, R.; Pesaresi, A.; Brazzolotto, X.; Gastellier, A. J.; Nachon, F.; Pejchal, J.; Jarosova, M.; Hepnarova, V.; Jun, D.; Hrabinova, M.; Misik, J.; Muckova, L.; Jost, P.; Soukup, O.; Benkova, M.; Setnicka, V.; Habartova, L.; Ulissi, E.; Valis, M.; Nepovimova, E.; Bolognesi, M. L.; Kuca, K. Eur. J. Med. Chem. 2019, 168, 491-514.
  12. Nugroho, A.; Choi, J. S.; Seong, S. H.; Song, B. M.; Park, K. S.; Park, H. J. Nat. Prod. Sci. 2018, 24, 259-265. https://doi.org/10.20307/nps.2018.24.4.259
  13. Murata, M.; Okada, H.; Homma, S. Biosci. Biotech. Biochem. 1995, 59, 1887-1890. https://doi.org/10.1271/bbb.59.1887
  14. Morishita, H.; Takai, Y.; Yamada, H.; Fukuda, F.; Sawada, M.; Iwahashi, H.; Kido, R. Phytochemistry 1987, 26, 1195-1196. https://doi.org/10.1016/S0031-9422(00)82377-8
  15. Berti, F.; Navarini, L.; Colomban, S.; Forzato, C. Molecules 2020, 25, 1704. https://doi.org/10.3390/molecules25071704
  16. Giacobini, E. Int. J. Geriatr. Psychiatry. 2003, 18, S1-S5. https://doi.org/10.1002/gps.935
  17. Kulhankova, A.; Cahlikova, L.; Novak, Z.; Macakova, K.; Kunes, J.; Opletal, L. Chem. Biodivers. 2013, 10, 1120-1127. https://doi.org/10.1002/cbdv.201200144