DOI QR코드

DOI QR Code

A simplified directly determination of natural frequencies of CNT: Via aspect ratio

  • Banoqitah, Essam Mohammed (Nuclear Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Khadimallah, Mohamed A. (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Ghandourah, Emad (Nuclear Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Yahya, Ahmad (Nuclear Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Basha, Muhammad (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Alshoaibi, Adil (Department of Physics, College of Science, King Faisal University)
  • Received : 2021.12.13
  • Accepted : 2022.06.07
  • Published : 2022.09.25

Abstract

In this paper, a novel model is developed for frequency behavior of single walled carbon nanotubes. The governing equation of motion is constructed method based on the Sander theory using Rayleigh-Ritz's method The frequencies enhances on increasing the power law index using simply supported, clamped and clamped free end conditions. The frequency curve for C-F is less than other conditions. It is due to the physical constraints which are applied on the edge of the CNT. It is observed that the C-F boundary condition have less frequencies from the other two conditions. The frequency phenomena for zigzag are insignificant throughout the aspect ratio. Moreover when index of power law is increased then frequencies increases for all boundary conditions. The natural frequency mechanism for the armchair (10, 10) for various values of power law index with different boundary conditions is investigated. Here frequencies decrease on increases the aspect ratio for all boundary conditions. The frequency curves of SS-SS edge condition is composed between the C-C and C-F conditions. The curves of frequency are less significant from small aspect ratio (L/d = 4.86 ~ 8.47) and decreases fast for greater ratios. It is found that the frequencies via aspect ratios, armchair (10, 10) have higher values from zigzag (10, 0). It is due to the material structure which is made by the carbon nanotubes. The power law index have momentous effect on the vibration of single walled carbon nanotubes. The present frequency result is also compared numerically experimentally with Raman Spectroscopy.

Keywords

Acknowledgement

This research work was funded by Institutional Fund Projects under grant no (IFPHI-031-135-2020).Therefore, authors gratefully acknowledge technical and financial support from the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

References

  1. Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A, and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct, 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147.
  2. Ahangarnazha, B.H., Pourbaba, M, and Afkar, A. (2020), "Bond behavior between steel and Glass Fiber Reinforced Polymer (GFRP) bars and ultra high performance concrete reinforced by Multi-Walled Carbon Nanotube (MWCNT)", Steel Compos. Struct., 35(4), 463-474. https://doi.org/10.12989/scs.2020.35.4.46.
  3. Ahmed, R.A., Fenjan, R.M, and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng, 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  4. Ahmed, R.A., Mustafa, N.M., Faleh, N.M, and Fenjan, R.M. (2020), "Nonlocal nonlinear stability of higher-order porous beams via Chebyshev-Ritz method", Struct. Eng. Mech., 76(3), 413-420. https://doi.org/10.12989/sem.2020.76.3.413.
  5. Akbas, S.D. (2016a), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125.
  6. Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579.
  7. Akbas S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X.
  8. Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1007/s40430-018-1315-1.
  9. Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039.
  10. Akbas, S.D. (2018b), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219-242. https://doi.org/10.12989/anr.2018.6.3.219.
  11. Akbas, S.D. (2018c), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(8), 1-11. https://doi.org/10.1007/s40430-018-1315-1.
  12. Akbas, S.D. (2019), "Axially forced vibration analysis of cracked a nanorod", J. Comput. Appl. Mech., 50(1), 63-68. https://doi.org/10.22059/jcamech.2019.281285.392.
  13. Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277-282. https://doi.org/10.12989/anr.2020.8.4.277.
  14. Alzabeebee, S. (2020), "Dynamic response and design of a skirted strip foundation subjected to vertical vibration", Geomech. Eng., 20(4), 345-358. https://doi.org/10.12989/gae.2020.20.4.345.
  15. Ansari, R., Rouhi, S, and Ahmadi, M. (2018), "On the thermal conductivity of carbon nanotube/polypropylene nanocomposites by finite element method", J. Comput. Appl. Mech., 49(1), 70-85. https://doi.org/10.22059/jcamech.2017.243530.195
  16. Attarnejad, R, and Ershadbakhsh, A.M. (2016), "Analysis of Euler-Bernoulli nanobeams: A mechanical-based solution", J. Comput. Appl. Mech., 47(2), 159-180. https://doi.org/10.22059/JCAMECH.2017.140165.97.
  17. Bakhadda, B., Bouiadjra, M.B., Bourada, F., Bousahla, A.A., Tounsi, A, and Mahmoud, S.R. (2018), "Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation", Wind Struct., 27(5), 311-324. https://doi.org/10.12989/was.2018.27.5.311.
  18. Banerjee, J., Williams, F., (1992), "Coupled bending-torsional dynamic stiffness matrix for Timoshenko beam elements", Comput. Struct., 42(3), 301-310. https://doi.org/10.1016/0020-7683(94)90075-2.
  19. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S. and Mahmoud, S.R. (2019). The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443.
  20. Bensattalah, T., Bouakkaz, K., Zidour, M, and Daouadji, T.H., (2018), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., 6(4), 339-356. https://doi.org/10.12989/anr.2018.6.4.339.
  21. Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A, and Benzair, A., (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., 3(1), 29-37. https://doi.org/10.12989/anr.2015.3.1.029.
  22. Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H, and Tounsi, A., (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., 6(2), 147-162. https://doi.org/10.12989/anr.2018.6.2.147.
  23. Bouanati, S., Benrahou, K.H., Atmane, H.A., Yahia, S.A., Bernard, F., Tounsi, A, and Bedia, E.A. (2019), "Investigation of wave propagation in anisotropic plates via quasi 3D HSDT", Geomech. Eng., 18(1), 85-96. https://doi.org/10.12989/gae.2019.18.1.085.
  24. Bouazza, M., Antar, K., Amara, K., Benyoucef, S, and Bedia, E.A. A. (2019), "Influence of temperature on the beams behavior strengthened by bonded composite plates", Geomech. Eng., 18(5), 555-566. https://doi.org/10.12989/gae.2019.18.5.555.
  25. Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A. A., Tounsi, A, and Mahmoud, S.R. (2019), "The effect of parameters of visco- Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
  26. Budiansky, B., Sanders, J.L., (1963), On the Best First Order Linear Shell Theory, Progress in Applied Mechanics, MacMillan, Inc., New York, U.S.A.
  27. Cao, Y., Musharavati, F., Baharom, S., Talebizadehsardari, P., Sebaey, T.A., Eyvazian, A, and Zain, A. M. (2020), "Vibration response of FG-CNT-reinforced plates covered by magnetic layer utilizing numerical solution", Steel Compos. Struct., 7(2), 253-258. https://doi.org/10.12989/scs.2020.37.2.253.
  28. Chawis, T., Somchai, C, and Li, T., (2013), "Nonlocal theory for free vibration of single-walled carbon nanotubes", Adv. Mater. Res., 747, 257-260. https://doi.org/10.4028/www.scientific.net/AMR.747.257.
  29. Chen, X, and Cao, G.X., (2006), "A structural mechanics study of single-walled carbon nanotubes generalized from atomistic simulation", Nanotechnology, 17, 1004. https://doi.org/10.1088/0957-4484/17/4/027.
  30. Civalek, O . (2020), "Vibration of functionally graded carbon nanotube reinforced quadrilateral plates using geometric transformation discrete singular convolution method", Int. J. Numer. Meth. Eng., 121(5), 990-1019. https://doi.org/10.1002/nme.6254
  31. Civalek, O, and Jalaei, M.H. (2020), "Buckling of carbon nanotube (CNT)-reinforced composite skew plates by the discrete singular convolution method", Acta Mechanica, 231(6), 2565-2587. https://doi.org/10.1007/s00707-020-02653-3
  32. Das, S.L., Mandal, T, and Gupta, S.S., (2013), "Inextensional vibration of zig-zag single-walled carbon nanotubes using nonlocal elasticity theories", Int. J. Solid Struct., 50(18), 2792-2797. https://doi.org/10.1016/j.ijsolstr.2013.04.019.
  33. Draoui, A., Zidour, M., Tounsi, A, and Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57(117-135). https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.
  34. Duan, W.H., Wang, C.M, and Zhang, Y.Y. (2007), "Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics", J. Appl. Phys., 101(2), 024305. https://doi.org/10.1063/1.2423140.
  35. Ebrahimi F, and Mahmoodi, F., (2018), "Vibration analysis of carbon nanotubes with multiple cracks in thermal environment", Adv. Nano Res., 6(1), 57-80. https://doi.org/10.12989/anr.2018.6.1.057.
  36. Ebrahimi, F., Dabbagh, A., Rabczuk, T, and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porositydependent homogenization scheme", Adv. Nano Res., 7(2), 135-143. https://doi.org/10.12989/anr.2019.7.2.135.
  37. Ehyaei, J, and Daman, M. (2017), "Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium with initial imperfection", Adv. Nano Res., 5(2), 179-192. https://doi.org/10.12989/anr.2017.5.2.179.
  38. Elishakoff, I. and Pentaras, D. (2009), "Fundamental natural frequencies of double-walled carbon nanotubes", J. Sound Vib., 322, 652-664. https://doi.org/10.1016/j.jsv.2009.02.037.
  39. El-sherbiny, S.G., Wageh, S., Elhalafawy, S.M, and Sharshar, A.A. (2013), "Carbon nanotube antennas analysis and applications", Adv. Nano Res., 1(1), 13-17. https://doi.org/10.12989/anr.2013.1.1.013.
  40. Eltaher, M.A., Almalki T.A., Ahmed K.I, and Almitani, K.H., (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent continuum mechanics approach", Adv. Nano Res., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039.
  41. Emdadi, M., Mohammadimehr, M, and Navi, B.R. (2019), "Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method", Adv. Nano Res., 7(2), 109-123. https://doi.org/10.12989/anr.2019.7.2.109.
  42. Farokhian, A, and Kolahchi, R. (2020), "Frequency and instability responses in nanocomposite plate assuming different distribution of CNTs", Struct. Eng. Mech., 73(5), 555-563. https://doi.org/10.12989/sem.2020.73.5.555.
  43. Fatahi-Vajari. A., Azimzadeh, Z., Hussain. M., (2019), "Nonlinear coupled axial-torsional vibration of single-walled carbon nanotubes using Galerkin and Homotopy perturbation method", Micro Nano Lett., 14(14), 1366-1371. https://doi.org/10.1049/mnl.2019.0203.
  44. Flugge, W., (1962), Stresses in Shells, Springer-Verlag, Berlin, Germany.
  45. Forsberg, K., (1964), "Influence of boundary conditions on modal characteristics of cylindrical shells", J. Am. Inst. Aeronaut. Astronaut., 2, 182-189. https://doi.org/10.2514/3.55115.
  46. Ghavanloo, E, and Fazelzadeh, S.A., (2012), "Vibration characteristics of single-walled carbon nanotubes based on an anisotropic elastic shell model including chirality effect", Appl. Math. Modell., 36(10), 4988-5000. https://doi.org/10.1016/j.apm.2011.12.036.
  47. Grupta, S.S, and Barta, R.C. (2008), "Continuum structures equivalent in normal mode vibrations to single-walled carbon nanotubes", Comp. Mater. Sci, 43, 715-723. https://doi.org/10.1016/j.commatsci.2008.01.032.
  48. Han, J., Globus A, Jaffe, R, and Deardorff, G., (1997), "Molecular dynamics simulations of carbon nanotube-based gears", Nanotechnology, 8(3), 95. https://doi.org/10.1088/0957-4484/8/3/001/meta.
  49. Harik, V.M. (2002), "Mechanics of carbon nanotubes: applicability of the continuum-beam models", Comp. Mater. Sci., 24, 328-342. https://doi.org/10.1016/S0927-0256(01)00255-5.
  50. Hersham, M.C., (2008), "Progress towards monodisperse singlewalled carbon nanotubes", Nature Nanotech, 3, 387-394. https://doi.org/10.1142/9789814287005_0001.
  51. Hsu, J.C., Chang, R.P, and Chang, W.J., (2008), "Resonance frequency of chiral single-walled carbon nanotubes using Timoshenko beam theory", Phys. Lett. A, 372(16), 2757-2759. https://doi.org/10.1016/j.physleta.2008.01.007.
  52. Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q, and Yakobson, B.I., (2008), "Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes", J. Mech. Phys. Solids, 56(12), 3475-3485. https://doi.org/10.1016/j.jmps.2008.08.010.
  53. Jorio, A., Saito, R., Hafner, J.H., Lieber, C.M., Hunter, M., McClure, T., Dresselhaus, G., Dresselhaus, M.S. (2001), "Structural (n,m) determination of isolated single-wall carbon nanotubes by resonant raman scattering", Phys. Rev. Lett., 86(6), 1118-1121. https://doi.org/10.1103/PhysRevLett.86.1118.
  54. Karami, B., Janghorban, M, and Tounsi, A. (2018), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin-Walled Structures, 129, 251-264. https://doi.org/10.1016/j.tws.2018.02.025.
  55. Ke, L.L., Xiang, Y., Yang, J, and Kitipornchai, S., (2009), "Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory", Comput. Mater. Sci., 47(2), 409-417. https://doi.org/10.1016/j.commatsci.2009.09.002.
  56. Khalaf, B.S., Fenjan, R.M, and Faleh, N.M. (2019). Analyzing nonlinear mechanical-thermal buckling of imperfect micro-scale beam made of graded graphene reinforced composites", Adv. Mater. Res., 8(3), 219. https://doi.org/10.12989/amr.2019.8.3.219.
  57. Kiani, K., (2014), "Vibration and instability of a single-walled carbon nanotube in a three dimensional magnetic field", J. Phys. Chem. Solid, 75(1), 15-22. https://doi.org/10.1016/j.jpcs.2013.07.022.
  58. Kocaturk, T, and Akbas, S.D. (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., 46(3), 417-431. https://doi.org/10.12989/sem.2013.46.3.417.
  59. Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N, and Treacy. M.M.J., (1998), "Young's modulus of single-walled nanotubes", Phys. Rev. B, 58(20), 14013-14019. https://doi.org/10.1103/PhysRevB.58.14013.
  60. Kulathunga, D.D.T.K., Ang, K.K, and Reddy, J.N., (2009), "Accurate modeling of buckling of single-and double-walled carbon nanotubes based on shell theories", J. Phys. Condens. Mat., 21(43), 435301. https://doi.org/10.1088/0953-8984/21/43/435301/meta.
  61. Kumar, B.R., (2018), "Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces", Adv. Nano Res., 6(2), 135-145. https://doi.org/10.12989/anr.2018.6.2.135.
  62. Lata, P, and Kaur, H. (2019)", Deformation in transversely isotropic thermoelastic medium using new modified couple stress theory in frequency domain", Geomech. Eng., 19(5), 369-381. https://doi.org/10.12989/gae.2019.19.5.369.
  63. Lata, P, and Kaur, I. (2019), "Effect of time harmonic sources on transversely isotropic thermoelastic thin circular plate", Geomech. Eng., 19(1), 29-36. https://doi.org/10.12989/gae.2019.19.1.029.
  64. Lee, H.L, and Chang, W.J., (2008), "Free transverse vibration of the fluid-conveying single-walled carbon nanotube using nonlocal elastic theory", J. Appl. Phys., 103(2), 024302. https://doi.org/10.1063/1.2822099.
  65. Li, C, and Chou, T.W., (2003), "A structural mechanics approach for the analysis of carbon nanotubes", Int. J. Solid Struct., 40(10), 2487-2499. https://doi.org/10.1016/S0020-7683(03)00056-8.
  66. Liu, J., Rinzler, A.G., Dai, H., Hafner, J.H., Bradley, R.K., Boul, P. J., Lu, A., Iverson, T., Shelimov, K., Huffman, C.B., Rodrigues- Macias, F., Shon, Y.S., Lee, T.R., Colbert, D.T, and Smalley, R.E., (1998), "Fullerene pipes", Science, 280, 1253-1256. https://doi.org/10.1126/science.280.5367.1253.
  67. Lordi, V. and Yao, N., (1998), "Young's modulus of single-walled carbon nanotubes", J. Appl. Phys., 84, 1939-1943. https://doi.org/10.1063/1.368323.
  68. Malikan, M. (2019), "On the buckling response of axially pressurized nanotubes based on a novel nonlocal beam theory", J. Appl. Comput. Mech., 5(1), 103-112. https://doi.org/10.22055/JACM.2018.25507.1274.
  69. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
  70. Mungra, C, and Webb, J.F. (2015), "Free vibration analysis of single-walled carbon nanotubes based on the continuum finite element method", Global J. Technol. Optim, 6, 173. http://doi.org/10.4172/2229-8711.1000173.
  71. Murmu, T, and Pradhan, S.C., (2009), "Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory", Comput. Mater. Sci., 46(4), 854-859. https://doi.org/10.1016/j.commatsci.2009.04.019.
  72. Narendar S, and Gopalakrishnan S., (2011), "Critical buckling temperature of single-walled carbon nanotubes embedded in a one-parameter elastic medium based on nonlocal continuum mechanics", Physica E, 43, 1185-1191. https://doi.org/10.1016/j.physe.2011.01.026.
  73. Natsuki, T., Endo, M. and Tsuda, H. (2009), "Vibration analysis of embedded carbon nanotubes using wave propagation approach", J. Appl. Phys., 9(3), 034311. https://doi.org/10.1063/1.2170418.
  74. Olofinkua, J. (2018), "On the effect of nanofluid flow and heat transfer with injection through an expanding or contracting porous channel", J. Comput. Appl. Mech., 49(1), 1-8. https://doi.org/10.22059/JCAMECH.2018.255680.264.
  75. Rafiee, R, and Mahdavi, M. (2016), "Molecular dynamics simulation of defected carbon nanotubes", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 230(2), 654-662. https://doi.org/10.1177/1464420715584809.
  76. Rana, G.C., Chand, R., Sharma, V, and Sharda, A. (2016), "On the onset of triple-diffusive convection in a layer of nanofluid", J. Comput. Appl. Mech., 47(1), 67-77. https://doi.org/10.22059/JCAMECH.2016.59256.
  77. Robertson, D.H., Brenner, D.W. and Mintmire, J.W. (1992), "Energetics of nano-scale graphitic tubule", Phys. Rev. B, 45, 12592. https://doi.org/10.1103/PhysRevB.45.12592.
  78. Safaei, B., Khoda, F.H, and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv Nano Res, 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265.
  79. Sanchez-Valencia, J.R., Dienel, T., Groning, O., Shorubalko, I., Mueller, A., Jansen, M., Amsharov, K., Ruffieux, P, and Fasel, R. (2014), "Controlled synthesis of single-chiral carbon nanotubes", Nature, 512, 61-64. https://doi.org/10.1038/nature13607.
  80. Selim, M.M. (2010), "Torsional vibration of carbon nanotubes under initial compression stress", Brazil. J. Phys., 40(3), 283-287. https://doi.org/10.1590/S0103-97332010000300004.
  81. Shahsavari, D., Karami, B, and Janghorban, M. (2019), "Sizedependent vibration analysis of laminated composite plates", Adv. Nano Res., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337.
  82. Shakouri, A., Lin, R, and Ng, T., (2009), "Free flexural vibration studies of double-walled carbon nanotubes with different boundary conditions and modeled as nonlocal Euler beams via the Galerkin method", J. Appl. Phys., 106(9), 094307. https://doi.org/10.1063/1.3239993.
  83. Sharma, P., Singh, R. and Hussain, M. (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234.
  84. Shen, H.S. (2009) "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91, 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.
  85. Si, H., Shen, D., Xia, J, and Tahouneh, V. (2020), "Vibration behavior of functionally graded sandwich beam with porous core and nanocomposite layers", Steel Compos. Struct., 36(1), 1-16. https://doi.org/10.12989/scs.2020.36.1.001.
  86. Simsek, M., (2010), "Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory", Physica E, 43, 182-191. https://doi.org/10.1016/j.physe.2010.07.003.
  87. Smalley, R.E., Li, Y., Moore, V.C., Price, B.C., Colorado, Jr, R., Schmidt, H.K., Hauge, R.H., Barron, A.R, and Tour, J.M. (2006), "Single wall carbon nanotube amplification: En route to a type-specific growth mechanism", J. Am. Chem. Soc., 128, 15824-15829. https://doi.org/10.1021/ja065767r.
  88. Soltani, P., Saberian, J, and Bahramian, R., (2016), "Nonlinear vibration analysis of single-walled carbon nanotube with shell model based on the nonlocal elasticity theory", J. Comput. Nonlinear Dyn., 11(1), 011002. https://doi.org/10.1115/1.4030753.
  89. Treacy, M.J., Ebbesen, T.W, and Gibson, J.M., (1996), "Exceptionally high Young's modulus observed for individual carbon nanotubes", Nature, 381(6584), 678-680. https://doi.org/10.1038/381678a0.
  90. Tserpes, K.I, and Papanikos, P. (2005), "Finite element modeling of single-walled carbon nanotubes", Compos. Part B Eng., 36, 468-477. https://doi.org/10.1016/j.compositesb.2004.10.003.
  91. Tu, Z.C, and Ou-Yang, Z.C., (2002), "Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young's moduli dependent on layer number", Phys. Rev. B., 65, 233407. https://doi.org/10.1103/PhysRevB.65.233407.
  92. Uyar, G.G, and Aksoy, C.O. (2019), "Comparative review and interpretation of the conventional and new methods in blast vibration analyses", Geomech. Eng., 18(5), 545-554. https://doi.org/10.12989/gae.2019.18.5.545.
  93. Vodenitcharova, T, and Zhang, L.C. (2003), "Effective wall thickness of a single-walled carbon nanotube", Phys. Rev. B, 68(16), 165401. https://doi.org/10.1103/PhysRevB.68.165401.
  94. Wang, C.Y, and Zhang, L.C., (2007), "Modeling the free vibration of single-walled carbon nanotubes", 5th Australasian Congress on Applied Mechanics, ACAM, Brisbane, Australia, 10-12. 5th Australasian Congress on Applied Mechanics, ACAM 2007 10-12 December 2007, Brisbane, Australia.
  95. Warburton, G.B. (1965), "Vibration of thin cylindrical shells", J. Mech. Eng. Sci., 7(4), 399-407. https://doi.org/10.1243/JMES-JOUR-1965-007-062-02.
  96. Wu, C.P., Chen, Y.H., Hong, Z.L, and Lin, C.H., (2018), "Nonlinear vibration analysis of an embedded multi-walled carbon nanotube", Adv. Nano Res., 6(2), 163-182. https://doi.org/10.12989/anr.2018.6.2.163.
  97. Yakobson, B.I., Brabec, C.J. and Bernholc, J., (1996), "Nanomechanics of carbon tubes: Instabilities beyond linear response", Phys. Rev. Lett., 76(14), 2511-2514. https://doi.org/10.1103/PhysRevLett.76.2511.
  98. Yang, J., Ke, L.L, and Kitipornchai, S., (2010), "Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", Physica E, 42(5), 1727-1735. https://doi.org/10.1016/j.physe.2010.01.035.
  99. Zhang, Y.Y., Wang, C.M, and Tan, V.B.C., (2009), "Assessment of Timoshenko beam models for vibrational behavior of singlewalled carbon nanotubes using molecular dynamics", Adv. Appl. Math. Mech, 1(1), 89-106. https://espace.library.uq.edu.au/view/UQ:417724.
  100. Zhao, Q., Gan, Z, and Zhuang, Q., (2002), "Electrochemical sensors based on carbon nanotubes", Electroanalysis, 14(23), 1609-1613. https://doi.org/10.3390/s90402289.
  101. Zine, A., Tounsi, A., Draiche, K., Sekkal, M, and Mahmoud, S.R. (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct., 26(2), 125-137. https://doi.org/10.12989/scs.2018.26.2.125.