Acknowledgement
This research work was funded by Institutional Fund Projects under grant no (IFPHI-031-135-2020).Therefore, authors gratefully acknowledge technical and financial support from the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.
References
- Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A, and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct, 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147.
- Ahangarnazha, B.H., Pourbaba, M, and Afkar, A. (2020), "Bond behavior between steel and Glass Fiber Reinforced Polymer (GFRP) bars and ultra high performance concrete reinforced by Multi-Walled Carbon Nanotube (MWCNT)", Steel Compos. Struct., 35(4), 463-474. https://doi.org/10.12989/scs.2020.35.4.46.
- Ahmed, R.A., Fenjan, R.M, and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng, 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
- Ahmed, R.A., Mustafa, N.M., Faleh, N.M, and Fenjan, R.M. (2020), "Nonlocal nonlinear stability of higher-order porous beams via Chebyshev-Ritz method", Struct. Eng. Mech., 76(3), 413-420. https://doi.org/10.12989/sem.2020.76.3.413.
- Akbas, S.D. (2016a), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125.
- Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579.
- Akbas S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X.
- Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1007/s40430-018-1315-1.
- Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039.
- Akbas, S.D. (2018b), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219-242. https://doi.org/10.12989/anr.2018.6.3.219.
- Akbas, S.D. (2018c), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(8), 1-11. https://doi.org/10.1007/s40430-018-1315-1.
- Akbas, S.D. (2019), "Axially forced vibration analysis of cracked a nanorod", J. Comput. Appl. Mech., 50(1), 63-68. https://doi.org/10.22059/jcamech.2019.281285.392.
- Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277-282. https://doi.org/10.12989/anr.2020.8.4.277.
- Alzabeebee, S. (2020), "Dynamic response and design of a skirted strip foundation subjected to vertical vibration", Geomech. Eng., 20(4), 345-358. https://doi.org/10.12989/gae.2020.20.4.345.
- Ansari, R., Rouhi, S, and Ahmadi, M. (2018), "On the thermal conductivity of carbon nanotube/polypropylene nanocomposites by finite element method", J. Comput. Appl. Mech., 49(1), 70-85. https://doi.org/10.22059/jcamech.2017.243530.195
- Attarnejad, R, and Ershadbakhsh, A.M. (2016), "Analysis of Euler-Bernoulli nanobeams: A mechanical-based solution", J. Comput. Appl. Mech., 47(2), 159-180. https://doi.org/10.22059/JCAMECH.2017.140165.97.
- Bakhadda, B., Bouiadjra, M.B., Bourada, F., Bousahla, A.A., Tounsi, A, and Mahmoud, S.R. (2018), "Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation", Wind Struct., 27(5), 311-324. https://doi.org/10.12989/was.2018.27.5.311.
- Banerjee, J., Williams, F., (1992), "Coupled bending-torsional dynamic stiffness matrix for Timoshenko beam elements", Comput. Struct., 42(3), 301-310. https://doi.org/10.1016/0020-7683(94)90075-2.
- Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S. and Mahmoud, S.R. (2019). The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443.
- Bensattalah, T., Bouakkaz, K., Zidour, M, and Daouadji, T.H., (2018), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., 6(4), 339-356. https://doi.org/10.12989/anr.2018.6.4.339.
- Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A, and Benzair, A., (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., 3(1), 29-37. https://doi.org/10.12989/anr.2015.3.1.029.
- Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H, and Tounsi, A., (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., 6(2), 147-162. https://doi.org/10.12989/anr.2018.6.2.147.
- Bouanati, S., Benrahou, K.H., Atmane, H.A., Yahia, S.A., Bernard, F., Tounsi, A, and Bedia, E.A. (2019), "Investigation of wave propagation in anisotropic plates via quasi 3D HSDT", Geomech. Eng., 18(1), 85-96. https://doi.org/10.12989/gae.2019.18.1.085.
- Bouazza, M., Antar, K., Amara, K., Benyoucef, S, and Bedia, E.A. A. (2019), "Influence of temperature on the beams behavior strengthened by bonded composite plates", Geomech. Eng., 18(5), 555-566. https://doi.org/10.12989/gae.2019.18.5.555.
- Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A. A., Tounsi, A, and Mahmoud, S.R. (2019), "The effect of parameters of visco- Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
- Budiansky, B., Sanders, J.L., (1963), On the Best First Order Linear Shell Theory, Progress in Applied Mechanics, MacMillan, Inc., New York, U.S.A.
- Cao, Y., Musharavati, F., Baharom, S., Talebizadehsardari, P., Sebaey, T.A., Eyvazian, A, and Zain, A. M. (2020), "Vibration response of FG-CNT-reinforced plates covered by magnetic layer utilizing numerical solution", Steel Compos. Struct., 7(2), 253-258. https://doi.org/10.12989/scs.2020.37.2.253.
- Chawis, T., Somchai, C, and Li, T., (2013), "Nonlocal theory for free vibration of single-walled carbon nanotubes", Adv. Mater. Res., 747, 257-260. https://doi.org/10.4028/www.scientific.net/AMR.747.257.
- Chen, X, and Cao, G.X., (2006), "A structural mechanics study of single-walled carbon nanotubes generalized from atomistic simulation", Nanotechnology, 17, 1004. https://doi.org/10.1088/0957-4484/17/4/027.
- Civalek, O . (2020), "Vibration of functionally graded carbon nanotube reinforced quadrilateral plates using geometric transformation discrete singular convolution method", Int. J. Numer. Meth. Eng., 121(5), 990-1019. https://doi.org/10.1002/nme.6254
- Civalek, O, and Jalaei, M.H. (2020), "Buckling of carbon nanotube (CNT)-reinforced composite skew plates by the discrete singular convolution method", Acta Mechanica, 231(6), 2565-2587. https://doi.org/10.1007/s00707-020-02653-3
- Das, S.L., Mandal, T, and Gupta, S.S., (2013), "Inextensional vibration of zig-zag single-walled carbon nanotubes using nonlocal elasticity theories", Int. J. Solid Struct., 50(18), 2792-2797. https://doi.org/10.1016/j.ijsolstr.2013.04.019.
- Draoui, A., Zidour, M., Tounsi, A, and Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57(117-135). https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.
- Duan, W.H., Wang, C.M, and Zhang, Y.Y. (2007), "Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics", J. Appl. Phys., 101(2), 024305. https://doi.org/10.1063/1.2423140.
- Ebrahimi F, and Mahmoodi, F., (2018), "Vibration analysis of carbon nanotubes with multiple cracks in thermal environment", Adv. Nano Res., 6(1), 57-80. https://doi.org/10.12989/anr.2018.6.1.057.
- Ebrahimi, F., Dabbagh, A., Rabczuk, T, and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porositydependent homogenization scheme", Adv. Nano Res., 7(2), 135-143. https://doi.org/10.12989/anr.2019.7.2.135.
- Ehyaei, J, and Daman, M. (2017), "Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium with initial imperfection", Adv. Nano Res., 5(2), 179-192. https://doi.org/10.12989/anr.2017.5.2.179.
- Elishakoff, I. and Pentaras, D. (2009), "Fundamental natural frequencies of double-walled carbon nanotubes", J. Sound Vib., 322, 652-664. https://doi.org/10.1016/j.jsv.2009.02.037.
- El-sherbiny, S.G., Wageh, S., Elhalafawy, S.M, and Sharshar, A.A. (2013), "Carbon nanotube antennas analysis and applications", Adv. Nano Res., 1(1), 13-17. https://doi.org/10.12989/anr.2013.1.1.013.
- Eltaher, M.A., Almalki T.A., Ahmed K.I, and Almitani, K.H., (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent continuum mechanics approach", Adv. Nano Res., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039.
- Emdadi, M., Mohammadimehr, M, and Navi, B.R. (2019), "Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method", Adv. Nano Res., 7(2), 109-123. https://doi.org/10.12989/anr.2019.7.2.109.
- Farokhian, A, and Kolahchi, R. (2020), "Frequency and instability responses in nanocomposite plate assuming different distribution of CNTs", Struct. Eng. Mech., 73(5), 555-563. https://doi.org/10.12989/sem.2020.73.5.555.
- Fatahi-Vajari. A., Azimzadeh, Z., Hussain. M., (2019), "Nonlinear coupled axial-torsional vibration of single-walled carbon nanotubes using Galerkin and Homotopy perturbation method", Micro Nano Lett., 14(14), 1366-1371. https://doi.org/10.1049/mnl.2019.0203.
- Flugge, W., (1962), Stresses in Shells, Springer-Verlag, Berlin, Germany.
- Forsberg, K., (1964), "Influence of boundary conditions on modal characteristics of cylindrical shells", J. Am. Inst. Aeronaut. Astronaut., 2, 182-189. https://doi.org/10.2514/3.55115.
- Ghavanloo, E, and Fazelzadeh, S.A., (2012), "Vibration characteristics of single-walled carbon nanotubes based on an anisotropic elastic shell model including chirality effect", Appl. Math. Modell., 36(10), 4988-5000. https://doi.org/10.1016/j.apm.2011.12.036.
- Grupta, S.S, and Barta, R.C. (2008), "Continuum structures equivalent in normal mode vibrations to single-walled carbon nanotubes", Comp. Mater. Sci, 43, 715-723. https://doi.org/10.1016/j.commatsci.2008.01.032.
- Han, J., Globus A, Jaffe, R, and Deardorff, G., (1997), "Molecular dynamics simulations of carbon nanotube-based gears", Nanotechnology, 8(3), 95. https://doi.org/10.1088/0957-4484/8/3/001/meta.
- Harik, V.M. (2002), "Mechanics of carbon nanotubes: applicability of the continuum-beam models", Comp. Mater. Sci., 24, 328-342. https://doi.org/10.1016/S0927-0256(01)00255-5.
- Hersham, M.C., (2008), "Progress towards monodisperse singlewalled carbon nanotubes", Nature Nanotech, 3, 387-394. https://doi.org/10.1142/9789814287005_0001.
- Hsu, J.C., Chang, R.P, and Chang, W.J., (2008), "Resonance frequency of chiral single-walled carbon nanotubes using Timoshenko beam theory", Phys. Lett. A, 372(16), 2757-2759. https://doi.org/10.1016/j.physleta.2008.01.007.
- Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q, and Yakobson, B.I., (2008), "Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes", J. Mech. Phys. Solids, 56(12), 3475-3485. https://doi.org/10.1016/j.jmps.2008.08.010.
- Jorio, A., Saito, R., Hafner, J.H., Lieber, C.M., Hunter, M., McClure, T., Dresselhaus, G., Dresselhaus, M.S. (2001), "Structural (n,m) determination of isolated single-wall carbon nanotubes by resonant raman scattering", Phys. Rev. Lett., 86(6), 1118-1121. https://doi.org/10.1103/PhysRevLett.86.1118.
- Karami, B., Janghorban, M, and Tounsi, A. (2018), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin-Walled Structures, 129, 251-264. https://doi.org/10.1016/j.tws.2018.02.025.
- Ke, L.L., Xiang, Y., Yang, J, and Kitipornchai, S., (2009), "Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory", Comput. Mater. Sci., 47(2), 409-417. https://doi.org/10.1016/j.commatsci.2009.09.002.
- Khalaf, B.S., Fenjan, R.M, and Faleh, N.M. (2019). Analyzing nonlinear mechanical-thermal buckling of imperfect micro-scale beam made of graded graphene reinforced composites", Adv. Mater. Res., 8(3), 219. https://doi.org/10.12989/amr.2019.8.3.219.
- Kiani, K., (2014), "Vibration and instability of a single-walled carbon nanotube in a three dimensional magnetic field", J. Phys. Chem. Solid, 75(1), 15-22. https://doi.org/10.1016/j.jpcs.2013.07.022.
- Kocaturk, T, and Akbas, S.D. (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., 46(3), 417-431. https://doi.org/10.12989/sem.2013.46.3.417.
- Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N, and Treacy. M.M.J., (1998), "Young's modulus of single-walled nanotubes", Phys. Rev. B, 58(20), 14013-14019. https://doi.org/10.1103/PhysRevB.58.14013.
- Kulathunga, D.D.T.K., Ang, K.K, and Reddy, J.N., (2009), "Accurate modeling of buckling of single-and double-walled carbon nanotubes based on shell theories", J. Phys. Condens. Mat., 21(43), 435301. https://doi.org/10.1088/0953-8984/21/43/435301/meta.
- Kumar, B.R., (2018), "Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces", Adv. Nano Res., 6(2), 135-145. https://doi.org/10.12989/anr.2018.6.2.135.
- Lata, P, and Kaur, H. (2019)", Deformation in transversely isotropic thermoelastic medium using new modified couple stress theory in frequency domain", Geomech. Eng., 19(5), 369-381. https://doi.org/10.12989/gae.2019.19.5.369.
- Lata, P, and Kaur, I. (2019), "Effect of time harmonic sources on transversely isotropic thermoelastic thin circular plate", Geomech. Eng., 19(1), 29-36. https://doi.org/10.12989/gae.2019.19.1.029.
- Lee, H.L, and Chang, W.J., (2008), "Free transverse vibration of the fluid-conveying single-walled carbon nanotube using nonlocal elastic theory", J. Appl. Phys., 103(2), 024302. https://doi.org/10.1063/1.2822099.
- Li, C, and Chou, T.W., (2003), "A structural mechanics approach for the analysis of carbon nanotubes", Int. J. Solid Struct., 40(10), 2487-2499. https://doi.org/10.1016/S0020-7683(03)00056-8.
- Liu, J., Rinzler, A.G., Dai, H., Hafner, J.H., Bradley, R.K., Boul, P. J., Lu, A., Iverson, T., Shelimov, K., Huffman, C.B., Rodrigues- Macias, F., Shon, Y.S., Lee, T.R., Colbert, D.T, and Smalley, R.E., (1998), "Fullerene pipes", Science, 280, 1253-1256. https://doi.org/10.1126/science.280.5367.1253.
- Lordi, V. and Yao, N., (1998), "Young's modulus of single-walled carbon nanotubes", J. Appl. Phys., 84, 1939-1943. https://doi.org/10.1063/1.368323.
- Malikan, M. (2019), "On the buckling response of axially pressurized nanotubes based on a novel nonlocal beam theory", J. Appl. Comput. Mech., 5(1), 103-112. https://doi.org/10.22055/JACM.2018.25507.1274.
- Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
- Mungra, C, and Webb, J.F. (2015), "Free vibration analysis of single-walled carbon nanotubes based on the continuum finite element method", Global J. Technol. Optim, 6, 173. http://doi.org/10.4172/2229-8711.1000173.
- Murmu, T, and Pradhan, S.C., (2009), "Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory", Comput. Mater. Sci., 46(4), 854-859. https://doi.org/10.1016/j.commatsci.2009.04.019.
- Narendar S, and Gopalakrishnan S., (2011), "Critical buckling temperature of single-walled carbon nanotubes embedded in a one-parameter elastic medium based on nonlocal continuum mechanics", Physica E, 43, 1185-1191. https://doi.org/10.1016/j.physe.2011.01.026.
- Natsuki, T., Endo, M. and Tsuda, H. (2009), "Vibration analysis of embedded carbon nanotubes using wave propagation approach", J. Appl. Phys., 9(3), 034311. https://doi.org/10.1063/1.2170418.
- Olofinkua, J. (2018), "On the effect of nanofluid flow and heat transfer with injection through an expanding or contracting porous channel", J. Comput. Appl. Mech., 49(1), 1-8. https://doi.org/10.22059/JCAMECH.2018.255680.264.
- Rafiee, R, and Mahdavi, M. (2016), "Molecular dynamics simulation of defected carbon nanotubes", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 230(2), 654-662. https://doi.org/10.1177/1464420715584809.
- Rana, G.C., Chand, R., Sharma, V, and Sharda, A. (2016), "On the onset of triple-diffusive convection in a layer of nanofluid", J. Comput. Appl. Mech., 47(1), 67-77. https://doi.org/10.22059/JCAMECH.2016.59256.
- Robertson, D.H., Brenner, D.W. and Mintmire, J.W. (1992), "Energetics of nano-scale graphitic tubule", Phys. Rev. B, 45, 12592. https://doi.org/10.1103/PhysRevB.45.12592.
- Safaei, B., Khoda, F.H, and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv Nano Res, 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265.
- Sanchez-Valencia, J.R., Dienel, T., Groning, O., Shorubalko, I., Mueller, A., Jansen, M., Amsharov, K., Ruffieux, P, and Fasel, R. (2014), "Controlled synthesis of single-chiral carbon nanotubes", Nature, 512, 61-64. https://doi.org/10.1038/nature13607.
- Selim, M.M. (2010), "Torsional vibration of carbon nanotubes under initial compression stress", Brazil. J. Phys., 40(3), 283-287. https://doi.org/10.1590/S0103-97332010000300004.
- Shahsavari, D., Karami, B, and Janghorban, M. (2019), "Sizedependent vibration analysis of laminated composite plates", Adv. Nano Res., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337.
- Shakouri, A., Lin, R, and Ng, T., (2009), "Free flexural vibration studies of double-walled carbon nanotubes with different boundary conditions and modeled as nonlocal Euler beams via the Galerkin method", J. Appl. Phys., 106(9), 094307. https://doi.org/10.1063/1.3239993.
- Sharma, P., Singh, R. and Hussain, M. (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234.
- Shen, H.S. (2009) "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91, 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.
- Si, H., Shen, D., Xia, J, and Tahouneh, V. (2020), "Vibration behavior of functionally graded sandwich beam with porous core and nanocomposite layers", Steel Compos. Struct., 36(1), 1-16. https://doi.org/10.12989/scs.2020.36.1.001.
- Simsek, M., (2010), "Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory", Physica E, 43, 182-191. https://doi.org/10.1016/j.physe.2010.07.003.
- Smalley, R.E., Li, Y., Moore, V.C., Price, B.C., Colorado, Jr, R., Schmidt, H.K., Hauge, R.H., Barron, A.R, and Tour, J.M. (2006), "Single wall carbon nanotube amplification: En route to a type-specific growth mechanism", J. Am. Chem. Soc., 128, 15824-15829. https://doi.org/10.1021/ja065767r.
- Soltani, P., Saberian, J, and Bahramian, R., (2016), "Nonlinear vibration analysis of single-walled carbon nanotube with shell model based on the nonlocal elasticity theory", J. Comput. Nonlinear Dyn., 11(1), 011002. https://doi.org/10.1115/1.4030753.
- Treacy, M.J., Ebbesen, T.W, and Gibson, J.M., (1996), "Exceptionally high Young's modulus observed for individual carbon nanotubes", Nature, 381(6584), 678-680. https://doi.org/10.1038/381678a0.
- Tserpes, K.I, and Papanikos, P. (2005), "Finite element modeling of single-walled carbon nanotubes", Compos. Part B Eng., 36, 468-477. https://doi.org/10.1016/j.compositesb.2004.10.003.
- Tu, Z.C, and Ou-Yang, Z.C., (2002), "Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young's moduli dependent on layer number", Phys. Rev. B., 65, 233407. https://doi.org/10.1103/PhysRevB.65.233407.
- Uyar, G.G, and Aksoy, C.O. (2019), "Comparative review and interpretation of the conventional and new methods in blast vibration analyses", Geomech. Eng., 18(5), 545-554. https://doi.org/10.12989/gae.2019.18.5.545.
- Vodenitcharova, T, and Zhang, L.C. (2003), "Effective wall thickness of a single-walled carbon nanotube", Phys. Rev. B, 68(16), 165401. https://doi.org/10.1103/PhysRevB.68.165401.
- Wang, C.Y, and Zhang, L.C., (2007), "Modeling the free vibration of single-walled carbon nanotubes", 5th Australasian Congress on Applied Mechanics, ACAM, Brisbane, Australia, 10-12. 5th Australasian Congress on Applied Mechanics, ACAM 2007 10-12 December 2007, Brisbane, Australia.
- Warburton, G.B. (1965), "Vibration of thin cylindrical shells", J. Mech. Eng. Sci., 7(4), 399-407. https://doi.org/10.1243/JMES-JOUR-1965-007-062-02.
- Wu, C.P., Chen, Y.H., Hong, Z.L, and Lin, C.H., (2018), "Nonlinear vibration analysis of an embedded multi-walled carbon nanotube", Adv. Nano Res., 6(2), 163-182. https://doi.org/10.12989/anr.2018.6.2.163.
- Yakobson, B.I., Brabec, C.J. and Bernholc, J., (1996), "Nanomechanics of carbon tubes: Instabilities beyond linear response", Phys. Rev. Lett., 76(14), 2511-2514. https://doi.org/10.1103/PhysRevLett.76.2511.
- Yang, J., Ke, L.L, and Kitipornchai, S., (2010), "Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", Physica E, 42(5), 1727-1735. https://doi.org/10.1016/j.physe.2010.01.035.
- Zhang, Y.Y., Wang, C.M, and Tan, V.B.C., (2009), "Assessment of Timoshenko beam models for vibrational behavior of singlewalled carbon nanotubes using molecular dynamics", Adv. Appl. Math. Mech, 1(1), 89-106. https://espace.library.uq.edu.au/view/UQ:417724.
- Zhao, Q., Gan, Z, and Zhuang, Q., (2002), "Electrochemical sensors based on carbon nanotubes", Electroanalysis, 14(23), 1609-1613. https://doi.org/10.3390/s90402289.
- Zine, A., Tounsi, A., Draiche, K., Sekkal, M, and Mahmoud, S.R. (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct., 26(2), 125-137. https://doi.org/10.12989/scs.2018.26.2.125.