DOI QR코드

DOI QR Code

Crossover from weak anti-localization to weak localization in inkjet-printed Ti3C2Tx MXene thin-film

  • Jin, Mi-Jin (Department of Materials Science & Metallurgy, University of Cambridge) ;
  • Um, Doo-Seung (Cambridge Graphene Centre, University of Cambridge) ;
  • Ogbeide, Osarenkhoe (Cambridge Graphene Centre, University of Cambridge) ;
  • Kim, Chang-Il (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Yoo, Jung-Woo (Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Robinson, J. W. A. (Department of Materials Science & Metallurgy, University of Cambridge)
  • 투고 : 2022.02.03
  • 심사 : 2022.08.05
  • 발행 : 2022.09.25

초록

Two-dimensional (2D) transition metal carbides/nitrides or "MXenes" belong to a diverse-class of layered compounds, which offer composition- and electric-field-tunable electrical and physical properties. Although the majority of the MXenes, including Ti3C2Tx, are metallic, they typically show semiconductor-like behaviour in their percolated thin-film structure; this is also the most common structure used for fundamental studies and prototype device development of MXene. Magnetoconductance studies of thin-film MXenes are central to understanding their electronic transport properties and charge carrier dynamics, and also to evaluate their potential for spin-tronics and magnetoelectronics. Since MXenes are produced through solution processing, it is desirable to develop deposition strategies such as inkjet-printing to enable scale-up production with intricate structures/networks. Here, we systematically investigate the extrinsic negative magnetoconductance of inkjetprinted Ti3C2Tx MXene thin-films and report a crossover from weak anti-localization (WAL) to weak localization (WL) near 2.5K. The crossover from WAL to WL is consistent with strong, extrinsic, spin-orbit coupling, a key property for active control of spin currents in spin-orbitronic devices. From WAL/WL magnetoconductance analysis, we estimate that the printed MXene thin-film has a spin orbit coupling field of up to 0.84 T at 1.9 K. Our results and analyses offer a deeper understanding into microscopic charge carrier transport in Ti3C2Tx, revealing promising properties for printed, flexible, electronic and spinorbitronic device applications.

키워드

과제정보

This work was supported by the Institute for Basic Science (IBS-R019-Y1) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (2021M3H4A1A02050421). J. W. A. R. acknowledges funding from the EPSRC through the EPSRC-JSPS Core-to-Core Grant "Oxide Superspin" (EP/P026311/1). We are grateful to Prof. Gogotsi's group (including Kathleen Maleski, Kanit Hantanasirisakul, Christopher E. Shuck, and Prof. Yury Gogotsi at Drexel University) for their supporting the Ti3C2 MXene materials and to Prof. Hassan's group (including Shouhu Liu, Guohua Hu, and Prof. Tawfique Hasan at University of Cambridge) for their supporting the inkjet printing.

참고문헌

  1. Akuzum, B., Maleski, K., Anasori, B., Lelyukh, P., Alvarez, N.J., Kumbur, E.C. and Gogotsi, Y. (2018), "Rheological characteristics of 2D titanium carbide (MXene) dispersions: A guide for processing MXenes", ACS Nano, 12(3), 2685-2694. https://doi.org/10.1021/acsnano.7b08889.
  2. Anasori, B., Lukatskaya, M.R. and Gogotsi, Y. (2017), "2D metal carbides and nitrides (MXenes) for energy storage", Nat. Rev. Mater., 2(2), 1-17. https://doi.org/10.1038/natrevmats.2016.98.
  3. Anasori, B., Shi, C., Moon, E.J., Xie, Y., Voigt, C.A., Kent, P.R.C., May, S.J., Billinge, S.J.L., Barsoum, M.W. and Gogotsi, Y. (2016), "Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers", Nanosc. Horiz., 1(3), 227-234. https://doi.org/10.1039/C5NH00125K.
  4. Anasori, B., Xie, Y., Beidaghi, M., Lu, J., Hosler, B.C., Hultman, L., Kent, P.R.C., Gogotsi, Y. and Barsoum, M.W. (2015), "Twodimensional, ordered, double transition metals carbides (MXenes)", ACS Nano, 9(10), 9507-9516. https://doi.org/10.1021/acsnano.5b03591.
  5. Cao, Q., Yun, F. F., Sang, L., Xiang, F., Liu, G. and Wang, X. (2017), "Defect introduced paramagnetism and weak localization in two-dimensional metal VSe2", Nanotechnology, 28(47), 475703. https://doi.org/10.1088/1361-6528/aa8f6c.
  6. Caviglia, A.D., Gabay, M., Gariglio, S., Reyren, N., Cancellieri, C. and Triscone, J.M. (2014), "Tunable rashba spin-orbit interaction at oxide interfaces", Phys. Rev. Lett., 104(12), 126803. https://doi.org/10.1103/PhysRevLett.104.126803.
  7. Chandrasekaran, A., Mishra, A. and Singh, A.K. (2017), "Ferroelectricity, antiferroelectricity, and ultrathin 2D electron/hole gas in multifunctional monolayer MXene", Nano Lett., 17(5), 3290-3296. https://doi.org/10.1021/acs.nanolett.7b01035.
  8. Dahlqvist, M. and Rosen, J. (2020), "Predictive theoretical screening of phase stability for chemical order and disorder in quaternary 312 and 413 MAX phases", Nanoscale, 12(2), 785-794. https://doi.org/10.1039/C9NR08675G.
  9. Datta, S. (1995), Electronic Transport in Mesoscopic Systems, Cambridge University Press, 196-245.
  10. Dey, R., Pramanik, T., Roy, A., Rai, A., Guchhait, S., Sonde, S., Movva, H.C.P., Colombo, L., Register, L.F. and Banerjee, S.K. (2014), "Strong spin-orbit coupling and Zeeman spin splitting in angle dependent magnetoresistance of Bi2Te3", Appl. Phys. Lett., 104(22), 223111. https://doi.org/10.1063/1.4881721.
  11. Deysher, G., Shuck, C.E., Hantanasirisakul, K., Frey, N.C., Foucher, A.C., Maleski, K., Sarycheva, A., Shenoy, V.B., Stach, E.A., Anasori, B. and Gogotsi, Y. (2020), "Synthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals", ACS Nano, 14(1), 204-217. https://doi.org/10.1021/acsnano.9b07708.
  12. Dresselhaus, P.D., Papavassiliou, C.M.A., Wheeler, R.G. and Sacks, R.N. (1992), "Observation of spin precession in GaAs inversion layers using antilocalization", Phys. Rev. Lett., 68(1), 106-109. https://doi.org/10.1103/PhysRevLett.68.106.
  13. Drouhin, H.J., Wegrowe, J.E., Razeghi, M., Lu, H.Z. and Shen, S.Q. (2014), "Weak localization and weak anti-localization in topological insulators", Proc. SPIE, 9167, 91672E. https://doi.org/10.1117/12.2063426.
  14. Enyashin, A.N. and Ivanovskii, A.L. (2012), "Atomic structure, comparative stability and electronic properties of hydroxylated Ti2C and Ti3C2 nanotubes", Comput. Theor. Chem., 989, 27-32. https://doi.org/10.1016/j.comptc.2012.02.034.
  15. Fashandi, H., Ivady, V., Eklund, P., Spetz, A.L., Katsnelson, M.I. and Abrikosov, I.A. (2015), "Dirac points with giant spin-orbit splitting in the electronic structure of two-dimensional transitionmetal carbides", Phys. Rev. B, 92(15), 155142. https://doi.org/10.1103/PhysRevB.92.155142.
  16. Gao, G., Ding, G., Li, J., Yao, K., Wu, M. and Qian, M. (2016), "Monolayer MXenes: Promising half-metals and spin gapless semiconductors", Nanoscale, 8 (16), 8986-8994. https://doi.org/10.1039/C6NR01333C.
  17. Ghidiu, M., Lukatskaya, M.R., Zhao, M.Q., Gogotsi, Y. and Barsoum, M.W. (2014), "Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance", Nature, 516(7529), 78-81. https://doi.org/10.1038/nature13970
  18. Guo, D., Ming, F., Su, H., Wu, Y., Wahyudi, W., Li, M., Hedhili, M.N., Sheng, G., Li, L.J., Alshareef, H.N., Li, Y. and Lai, Z. (2019), "MXene based self-assembled cathode and antifouling separator for high-rate and dendrite-inhibited Li-S battery", Nano Energy, 61, 478-485. https://doi.org/10.1016/j.nanoen.2019.05.011.
  19. Halim, J., Lukatskaya, M.R., Cook, K.M., Lu, J., Smith, C.R., Naslund, L.A ., May, S.J., Hultman, L. Gogotsi, Y., Eklund, P. and Barsoum, M.W. (2014), "Transparent conductive twodimensional titanium carbide epitaxial thin films", Chem. Mater, 26(7), 2374-2381. https://doi.org/10.1021/cm500641a
  20. Halim, J., Kota, S., Lukatskaya, M.R., Naguib, M., Zhao, M.Q., Moon, E.J., Pitock, J., Nanda, J., May, S.J., Gogotsi, Y. and Barsoum, M.W. (2016), "Synthesis and characterization of 2D molybdenum carbide (MXene)", Adv. Func. Mater., 26(18), 3118-3127. https://doi.org/10.1002/adfm.201505328.
  21. Halim, J., Moon, E.J., Eklund, P., Rosen, J., Barsoum, M.W. and Ouisse, T. (2018), "Variable range hopping and thermally activated transport in molybdenum-based MXenes", Phys. Rev. B, 98 (10), 104202. https://doi.org/10.1103/PhysRevB.98.104202.
  22. Halim, J., Persson, I., Moon, E.J., Kuhne, P., Darakchieva, V., Persson, P.O.A., Eklund, P., Rosen, J. and Barsoum, M.W. (2019), "Electronic and optical characterization of 2D Ti2C and Nb2C (MXene) thin films", J. Phys. Condens. Matter., 31(16), 165301. https://doi.org/10.1088/1361-648X/ab00a2.
  23. Han, M., Shuck, C.E., Rakhmanov, R., Parchment, D., Anasori, B., Koo, C.M., Friedman, G. and Gogotsi, Y. (2020), "Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding", ACS Nano, 14(4), 5008-5016. https://doi.org/10.1021/acsnano.0c01312.
  24. Hansen, A.E., Bjork, M.T., Fasth, C., Thelander, C. and Samuelson, L. (2005), "Spin relaxation in InAs nanowires studied by tunable weak antilocalization", Phys. Rev. B, 71(20), 205328. https://doi.org/10.1103/PhysRevB.71.205328.
  25. Heikkila, T.T. (2013), The Physics of Nanoelectronics: Tansport and Fluctuation Phenomena at Low Temperatures, Oxford University Press, 296.
  26. Hikami, S., Larkin, A.I., Nagaoka, Y. (1980), "Spin-orbit interaction and magnetoresistance in the two dimensional random system", Prog. Theor. Phys., 63(2), 707-710. https://doi.org/10.1143/PTP.63.707.
  27. Hu, T., Zhang, H., Wang, J., Li, Z., Hu, M., Tan, J., Hou, P., Li, F. and Wang, X. (2015), "Anisotropic electronic conduction in stacked two-dimensional titanium carbide", Sci. Rep., 5, 16329. https://doi.org/10.1038/srep16329.
  28. Hu, G., Kang, J., Ng, L. W.T., Zhu, X., Howe, R.C.T., Jones, C.G., Hersam, M.C. and Hasan, T. (2018), "Functional inks and printing of two-dimensional materials", Chem. Soc. Rev., 47(9), 3265-3300. https://doi.org/10.1039/C8CS00084K.
  29. Hu, G., Yang, L., Yang, Z., Wang, Y., Jin, X., Dai, J., Wu, Q., Liu, S., Zhu, X., Wang, X., Wu, T.C, Howe, R.C.T., Albow-Owen, T., Ng, L.W.T., Yang, Q., Occhipinti, L.G., Woodward, R.I., Kelleher, E.J.R., Sun, Z., Huang, X., Zhang, M., Bain, C.D. and Hasan, T. (2020), "A general ink formulation of 2D crystals for wafer-scale inkjet printing", Sci. Adv., 6, eaba5029. https://doi.org/10.1126/sciadv.aba5029.
  30. Jiang, X., Kuklin, A.V., Baev, A., Ge, Y., A gren, H., Zhang, H. and Prasad, P.N. (2020), "Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications", Phys. Rep., 848, 1-58. https://doi.org/10.1016/j.physrep.2019.12.006.
  31. Khazaei, M., Arai, M., Sasaki, T., Chung, C.Y., Venkataramanan, N.S., Estili, M., Sakka, Y. and Kawazoe, Y. (2013), "Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides", Adv. Func. Mater., 23(17), 2185-2192. https://doi.org/10.1002/adfm.201202502.
  32. Khazaei, M., Ranjbar, A., Arai, M. and Yunoki, S. (2016), "Topological insulators in the ordered double transition metals M'2M''C2 MXenes (M'= Mo, W; M''=Ti, Zr, Hf)", Phys. Rev. B, 94(12), 125152. https://doi.org/10.1103/PhysRevB.94.125152.
  33. Khazaei, M., Ranjbar, A., Arai, M., Sasaki, T. and Yunoki, S. (2017), "Electronic properties and applications of MXenes: A theoretical review", J. Mater. Chem. C, 5(10), 2488-2503. https://doi.org/10.1039/C7TC00140A.
  34. Kumar, H., Frey, N.C., Dong, L., Anasori, B., Gogotsi, Y. and Shenoy, V.B. (2017), "Tunable magnetism and transport properties in nitride MXenes", ACS Nano, 11(8), 7648-7655. https://doi.org/10.1021/acsnano.7b02578.
  35. Kumar, P., Dogra, A., Bhadauria, P.P., Gupta, A., Maurya, K.K. and Budhani, R.C. (2015), "Enhanced spin-orbit coupling and charge carrier density suppression in LaAl1-xCrxO3/SrTiO3 hetero-interfaces", J. Phys. Condens. Matter., 27(12), 125007. https://doi.org/10.1088/0953-8984/27/12/125007.
  36. Lane, N.J., Barsoum, M.W. and Rondinelli, J.M. (2013), "Correlation effects and spin-orbit interactions in twodimensional hexagonal 5d transition metal carbides, Tan+1Cn (n = 1,2,3)", EPL, 101(5), 57004. https://doi.org/10.1209/0295-5075/101/57004.
  37. Lang, M., He, L., Kou, X., Upadhyaya, P., Fan, Y., Chu, H., Jiang, Y., Bardarson, J.H., Jiang, W., Choi, E.S., Wang, Y., Yeh, N.C. Moore, J., Wang, K.L. (2013), "Competing weak localization and weak antilocalization in ultrathin topological insulators", Nano Lett., 13(1), 48-53. https://doi.org/10.1021/nl303424n.
  38. Lee, M., Williams, J.R., Zhang, S., Frisbie, C.D. and Goldhaber-Gordon, D. (2011), "Electrolyte gate-controlled Kondo effect in SrTiO3", Phys. Rev. Lett., 107(25), 256601. https://doi.org/10.1103/PhysRevLett.107.256601.
  39. Liu, H., Bao, L., Zhou, Z., Che, B., Zhang, R., Bian, C., Ma, R., Wu, L., Yang, H., Li, J., Gu, C., Shen, C.M., Du, S. and Gao, H.J. (2019), "Quasi-2D transport and weak antilocalization effect in few-layered VSe2", Nano Lett., 19(7), 4551-4559. https://doi.org/10.1021/acs.nanolett.9b01412.
  40. Liu, L., Ying, G., Wen, D., Hu, C., Zhang, C. and Wang, C. (2021), "Strengthening effect of Ti3C2Tx in copper matrix composites prepared by molecular-level and high-shear mixings and SPS", Adv. Nano. Res., 11(3), 271-280. https://doi.org/10.12989/anr.2021.11.3.271.
  41. Liu, M., Zhang, J., Chang, C.Z., Zhang, Z., Feng, X., Li, K., He, K., Wang, L.L., Chen, X., Dai, X., Fang, Z., Xue, Q. K., Ma, X. and Wang, Y. (2012), "Crossover between weak antilocalization and weak localization in a magnetically doped topological insulator", Phys. Rev. Lett., 108(3), 036805. https://doi.org/10.1103/PhysRevLett.108.036805.
  42. Liu, W.E., Hankiewicz, E.M. and Culcer, D. (2017), "Weak localization and antilocalization in topological materials with impurity spin-orbit interactions", Materials, 10(7), 807. https://doi.org/10.3390/ma10070807.
  43. Lu, H.Z. and Shen, S.Q. (2015), "Weak antilocalization and localization in disordered and interacting Weyl semimetals", Phys. Rev. B, 92(3), 035203. https://doi.org/10.1103/PhysRevB.92.035203.
  44. Maekawa, S., Fukuyama, H. (1981), "Magnetoresistance in twodimensional disordered systems: Effects of zeeman splitting and spin-orbit scattering", J. Phys. Soc. Jap., 50(8), 2516-2524. https://doi.org/10.1143/JPSJ.50.2516.
  45. Maleski, K., Mochalin, V. N. and Gogotsi, Y. (2017), "Dispersions of two-dimensional titanium carbide mxene in organic solvents", Chem. Mater., 29(4), 1632-1640. https://doi.org/10.1021/acs.chemmater.6b04830.
  46. Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y. and Barsoum, M.W. (2011), "Twodimensional nanocrystals produced by exfoliation of Ti3AlC2", Adv. Mater., 23 (37), 4248-53. https://doi.org/10.1002/adma.201102306.
  47. Naguib, M., Mashtalir, O., Carle, J., Presser, V., Lu, J., Hultman, L., Gogotsi, Y. and Barsoum, M.W. (2012), "Two-dimensional transition metal carbides", ACS Nano, 6(2), 1322-1331. https://doi.org/10.1021/nn204153h.
  48. Niu, C., Qiu, G., Wang, Y., Zhang, Z., Si, M., Wu, W. and Ye, P.D. (2020), "Gate-tunable strong spin-orbit interaction in twodimensional tellurium probed by weak antilocalization", Phys. Rev. B, 101(20), 205414. https://doi.org/10.1103/PhysRevB.101.205414.
  49. Pinto, D., Anasori, B., Avireddy, H., Shuck, C.E., Hantanasirisakul, K., Deysher, G., Morante, J.R., Porzio, W., Alshareef, H.N. and Gogotsi, Y. (2020), "Synthesis and electrochemical properties of 2D molybdenum vanadium carbides - solid solution MXenes", J. Mater. Chem. A, 8(18), 8957-8968. https://doi.org/10.1039/D0TA01798A.
  50. Salles, P., Pinto, D., Hantanasirisakul, K., Maleski, K., Shuck, C. E. and Gogotsi, Y. (2019), "Electrochromic effect in titanium carbide mxene thin films produced by dip-coating", Adv. Func. Mater., 29(17), 1809223. https://doi.org/10.1002/adfm.201809223.
  51. Sarycheva, A., Polemi, A., Liu, Y., Dandekar, K., Anasori, B. and Gogotsi, Y. (2018), "2D titanium carbide (MXene) for wireless communication", Sci. Adv., 4(9), eaau0920. https://doi.org/10.1126/sciadv.aau0920
  52. Satheeshkumar, E., Makaryan, T., Melikyan, A., Minassian, H., Gogotsi, Y. and Yoshimura, M. (2016), "One-step solution processing of Ag, Au and Pd@MXene Hybrids for SERS", Sci. Rep., 6, 32049. https://doi.org/10.1038/srep32049.
  53. Schapers, T., Guzenko, V.A., Pala, M.G., Zulicke, U., Governale, M., Knobbe, J. and Hardtdegen, H. (2006), "Suppression of weak antilocalization in GaxIn1-xAs/InP narrow quantum wires", Phys. Rev. B, 74(8), 081301(R). https://doi.org/10.1103/PhysRevB.74.081301.
  54. Schmidt, H., Yudhistira, I., Chu, L., Castro Neto, A. H., Ozyilmaz, B., Adam, S. and Eda, G. (2016), "Quantum Transport and Observation of Dyakonov-Perel Spin-Orbit Scattering in Monolayer MoS2", Phys. Rev. Lett., 116(4), 046803. https://doi.org/10.1103/PhysRevLett.116.046803.
  55. Shuck, C.E., Han, M., Maleski, K., Hantanasirisakul, K., Kim, S. J., Choi, J., Reil, W.E.B. and Gogotsi, Y. (2019), "Effect of Ti3AlC2 MAX Phase on Structure and Properties of Resultant Ti3C2TX MXene", ACS Appl. Nano Mater., 2(6), 3368-3376. https://doi.org/10.1021/acsanm.9b00286.
  56. Shuck, C.E., Sarycheva, A., Anayee, M., Levitt, A., Zhu, Y., Uzun, S., Balitskiy, V., Zahorodna, V., Gogotsi, O. and Gogotsi, Y. (2020), "Scalable Synthesis of Ti3C2TX MXene", Adv. Eng. Mater., 22(3). https://doi.org/10.1002/adem.201901241.
  57. Si, C., Zhou, J. and Sun, Z. (2015), "Half-metallic ferromagnetism and surface functionalization-induced metal-insulator transition in graphene-like two-dimensional Cr2C crystals", ACS Appl. Mater. Inter., 7(31), 17510-5. https://doi.org/10.1021/acsami.5b05401.
  58. Soundiraraju, B. and George, B.K. (2017), "Two-dimensional titanium nitride (ti2n) mxene: Synthesis, characterization, and potential application as surface-enhanced raman scattering substrate", ACS Nano, 11(9), 8892-8900. https://doi.org/10.1021/acsnano.7b03129.
  59. Stornaiuolo, D., Jouault, B., Di Gennaro, E., Sambri, A., D'Antuono, M., Massarotti, D., Granozio, F.M., Di Capua, R., De Luca, G.M., Pepe, G.P., Tafuri, F. and Salluzzo, M. (2018), "Interplay between spin-orbit coupling and ferromagnetism in magnetotransport properties of a spin-polarized oxide twodimensional electron system", Phys. Rev. B, 98(7), 075409. https://doi.org/10.1103/PhysRevB.98.075409.
  60. Tikhonenko, F.V., Kozikov, A.A., Savchenko, A.K. and Gorbachev, R.V. (2009), "Transition between electron localization and antilocalization in graphene", Phys. Rev. Lett., 103(22), 226801. https://doi.org/10.1103/PhysRevLett.103.226801.
  61. Urbankowski, P., Anasori, B., Makaryan, T., Er, D., Kota, S., Walsh, P.L., Zhao, M., Shenoy, V.B., Barsoum, M.W. and Gogotsi, Y. (2016), "Synthesis of two-dimensional titanium nitride Ti4N3 (MXene)", Nanoscale, 8(22), 11385-11391. https://doi.org/10.1039/C6NR02253G.
  62. VahidMohammadi, A., Rosen, J. and Gogotsi, Y. (2021), "The world of two-dimensional carbides and nitrides (MXenes)", Science, 372, 1165. https://doi.org/10.1126/science.abf1581.
  63. Weng, H., Ranjbar, A., Liang, Y., Song, Z., Khazaei, M., Yunoki, S., Arai, M., Kawazoe, Y., Fang, Z. and Dai, X. (2015), "Largegap two-dimensional topological insulator in oxygen functionalized MXene", Phys. Rev. B, 92(7), 075436. https://doi.org/10.1103/PhysRevB.92.075436.
  64. Xie, Y. and Kent, P.R.C. (2013), "Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X=C, N) monolayers", Phys. Rev. B, 87(23), 235441. https://doi.org/10.1103/PhysRevB.87.235441.
  65. Zha, X.H., Luo, K., Li, Q., Huang, Q., He, J., Wen, X. and Du, S. (2015), "Role of the surface effect on the structural, electronic and mechanical properties of the carbide MXenes", EPL, 111(2), 26007. https://doi.org/10.1209/0295-5075/111/26007.