DOI QR코드

DOI QR Code

Adsorptive and kinetic studies of toxic metal ions from contaminated water by functionalized silica

  • Kumar, Rajesh (Water Quality Management Group, Desert Environmental Science and Technology Division) ;
  • Verma, Sunita (Water Quality Management Group, Desert Environmental Science and Technology Division) ;
  • Harwani, Geeta (Water Quality Management Group, Desert Environmental Science and Technology Division) ;
  • Patidar, Deepesh (Water Quality Management Group, Desert Environmental Science and Technology Division) ;
  • Mishra, Sanjit (Water Quality Management Group, Desert Environmental Science and Technology Division)
  • Received : 2020.04.04
  • Accepted : 2022.09.07
  • Published : 2022.09.25

Abstract

The objective of the study, to develop adsorbent based purifier for removal of radiological and nuclear contaminants from contaminated water. In this regard, 3-aminopropyl silica functionalized with ethylenediamine tetraacetic acid (APS-EDTA) adsorbent prepared and characterized by Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Prepared APS-EDTA used for adsorptive studies of Cs(I), Co(II), Sr(II), Ni(II) and Cd(II) from contaminated water. The effect on adsorption of various parameters viz. contact time, initial concentration of metal ions and pH were also analyzed. The batch method has been employed using metal ions in solution from 1000-10000 ㎍/L, contact time 5-60 min., pH 4-10 and material quantities 50-200 mg at room temperature. The obtained adsorption data were used for drawing Freundlich and Langmuir isotherms model and both models were found suitable for explaining the metal ions adsorption on APS-EDTA. The adsorption data were followed pseudo second order reaction kinetics. The maximum adsorption capacity obtained 1.3037-1.4974 mg/g for above said metal ions. The results show that APS-EDTA have great potential to remove Cd(II), Co(II), Cs(I), Ni(II) and Sr(II) from aqueous solutions through chemisorption and physio-sorption.

Keywords

Acknowledgement

We gratefully acknowledge the support, encouragement and valuable suggestion which we received from Sh. Ravindra Kumar, Director, Defence laboratory. Authors would like to thank Dr. Yojana Janu for XRD characterization of material. The authors thank to all members of Water Quality Management Group for direct and indirect support and help during this study.

References

  1. Abdel-Ghani, N.T., Hegazy, A.K. and El-Chaghaby, G.A. (2009), "Typha domingensis leaf powder for decontamination of aluminium, iron, zinc and lead: Biosorption kinetics and equilibrium modeling", Int. J. Environ. Sci. Technol., 6, 243- 248. https://doi.org/10.1007/BF03327628.
  2. Abraham, T.N., Kumar, R., Misra, R.K. and Jain S.K. (2012), "Poly (vinyl alcohol) based MWNT hydrogel for lead ion removal from contaminated water", J. App. Polym Sci., 125, E670-E674. https://doi.org/10.1002/app.35666.
  3. Aguado, J., Arsuaga, J.M., Arencibia, A., Lindo, M. and Gascon, V., (2009), "Aqueous heavy metals removal by adsorption on amine functionalized mesoporous silica", J. Hazard. Mater., 163, 213-221. http://doi.org/10.1016/j.jhazmat.2008.06.080.
  4. Allen, J.A. and Brown, D.A. (1995), "Isotherm analyses for single component and multi component metal sorption onto lignite", J. Chem. Technol. Biotech., 62, 17-24. https://doi.org/10.1002/jctb.280620103.
  5. Bagheri, H., Gholami, A. and Najafi, A. (2000), "Simultaneous preconcentration and speciation of iron(II) and iron(III) in water samples by 2-mercaptobenzimidazole-silica gel sorbent and flow injection analysis system.", Anal. Chim. Acta., 424(2), 233-242. https://doi.org/10.1016/S0003-2670(00)01151-X.
  6. Chen, C., Hu, J., Xu, D., Tan, X., Meng, Y. and Wang, X. (2008), "Surface complexation of Sr(II) and Eu(II) adsorption onto oxidized multi carbon nanotubes", J Colloid. Interf. Sci., 323, 33-41. https://doi.org/10.1016/j.jcis.2008.04.046.
  7. Demirbas, A. (2009). "Adsorption of lead and cadmium ions in aqueous solutions onto modified lignin from alkali glycerol delignication", J Hazard. Mater., 109, 221-226. http://doi.org/10.1016/j.jhazmat.2004.04.002.
  8. Dizge, N., Keskinler, B. and Barlas, H. (2009), "Sorption of Ni(II) ions from aqueous solution by Lewatit cation-exchange resin", J. Hazard. Mater., 167, 915-926. http://doi.org/10.1016/j. jhazmat.2009.01.073.
  9. Ewecharoen, A., Thiravetyan, P., Wendel, E. and Bertagnolli, H. (2009), "Nickel adsorption bysodium polyacrylate-grafted activated carbon", J. Hazard. Mater., 171, 335-339. HTTP://DOI.ORG/10.1016/j.jhazmat.2009.06.008.
  10. Freundlich, H.M.F. (1906), "uber die adsorption in lasungen", Zeitschrift fur Physikalische Chemie, 57, 385-470.
  11. Garcia-Valls, R., Hrdiicka, A., Perulka, J., Havel, J., Deorkar, N.V., Tavlarides, L.L., Munoz, M., Valiente, M (2001), "Separation of rare earth elements by high performance liquid chromatography using a covalent modified silica gel column", Anal. Chim. Acta, 439(2), 247-253. https://doi.org/10.1016/S0003-2670(01)01044-3.
  12. Ghoul, M., Bacquet, M. and Morcellet, M. (2003), "Uptake of heavy metals from synthetic aqueous solutions using modified PEI-silica gels", Water Res., 37(2), 729-734. https://doi.org/10.1016/S0043-1354(02)00410-4.
  13. Gupta, S. and Babu, B.V. (2009), "Utilization of waste product (tamarind seeds) for the removal of Cr (VI) from aqueous solution: Equlibrium, kinetics and regeneration studies", J. Environ. Manag., 90, 3013-3022. http://doi.org/10.1016/j.jenvman.2009.04.006.
  14. Gupta, V.K., Kumar, R., Nayak, A., Saleh, T.A., Barakat, M.A. (2013), "Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review", Adv. Coll. Interf. Sci., 193, 24-34. http://doi.org/10.1016/j.cis.2013.03.003.
  15. Ho, Y.S. and McKay, G. (2000), "The kinetic of sorption of divalent metal ions onto sphagnum moss peat", Water Res., 34, 735-742. http://doi.org/10.1016/S0043-1354(99)00232-8.
  16. Harish, N., Janardhan, P. and Sangami, S. (2018) "Effective adsorption of lead and copper from aqueous solution by samaneasaman and banana stem'', Adv. Environ. Res., 7(3), 225-237. https://doi.org/10.12989 /aer.2019.7.3.225 https://doi.org/10.12989/aer.2019.7.3.225
  17. Ibrahim, G.M. (2010), "Removal of 60Co and 134Cs radionuclides from aqueous solution using titanium tungstate ion exchanger", Desalin. Water Treat., 12, 418-426. https://doi.org/10.5004/dwt.2010.999.
  18. Ibrahim, G.M., EI-Gammal, B. and EI-Naggar, I.M. (2003), "Selectivity modification of some alkali metal ions on silicon antimonite as cation exchanger", Curr. Top. Colloid. Interf. Sci., 3, 159-165.
  19. Inglezakis, V.J., Loizidon, M.D. and Grigoropoulou, H.P. (2003), "Ion exchange of Pb2+, Cu2+, Fe3+, and Cr3+ on natural clinoptilolite: Selectivity determination and influence of acidity on metal uptake", J. Colloid. Interf. Sci., 261, 49-54. https://doi.org/10.1016/S0021-9797(02)00244-8.
  20. Jal, P.K., Dutta, R.K., Sudershan, M., Saha, A., Bhattacharyya, S.N., Chintalapudi, S.N., Mishra, B.K. (2001), Extraction of metal ions using chemically modified silica gel: A PIXE analysis", Talanta, 55(2), 233-240. https://doi.org/10.1016/S0039-9140(00)00678-0.
  21. Jung, J., Shin, B., Park, K. Y., Won S. and Cho, J. (2019) "Pilot scale membrane separation of plating wastewater by nano- filtration and reverse osmosis", Membr. Water Treat., 10(3), 239-244. https://doi.org/10.12989/mwt.2019.10.3.239.
  22. Kang, K., Kim, S.S., Choi, J.W. and Kwon, S.H. (2008), "Sorption of Cu(II) and Cd(II) onto acid and base pretreated granular activated carbon and activated carbon fiber samples", J. Ind. Eng. Chem., 14, 131-135. https://doi.org /10.1016/j.jiec.2007.08.007.
  23. Kemp, R.V. and Bennett, D.G. (2006), "White M: Recent trends and developments in dialogue on radioactive waste management: Experience from the UK", J. Environ. Int., 32, 1021-1032. http://doi.org/10.1016/j.envint.2006.06.010.
  24. Klika, Z., Kraus, L. and Vopalka, D. (2007), "Cesium uptake from aqueous solutions by bentonite: A comparison of multicomponent sorption with ion-exchange models", Langmuir, 23, 1227-1233. http://doi.org/10.1021/la062080b.
  25. Kumar, R., Jain, S.K., Misra, R.K., Kachwaha, M. and Khatri P.K. (2011), "Aqueous heavy metals removal by absorption on β-diketone - functionalized Styrene-DVB co polymeric resin", Int. J. Environ. Sci. Technol., 9, 79-84. http://doi.org/10.1007/s13762-011-0019-1.
  26. Kumar, R. and Jain, S.K. (2011), "Synthesis, characterization and application of a new chelating resin containing 2-(4-methyl benzylidene) hydrazone", Adsort. Sci. Technol., 29, 917-926. https://doi.org/10.1260/0263-6174.29.9.917.
  27. Kumar, R. and Jain, S.K. (2013), "Adsorption and kinetic studies of cesium ions from aqueous solution by functionalized silica", Desalin. Water Treat., 51, 2014-2020. http://doi.org/10.1080/19443994.2012.734734.
  28. Rambabu, K., Bharath, G., Banat, F. and Show, P.L. (2020), "Biosorption performance of date palm empty fruit bunch wastes for toxic hexavalent chromium removal", Environ. Res.,187, 109694, 1-11. https://doi.org/10.1016/j.envres.2020.109694.
  29. Rambabu, K., Yammahi, J.A., Bharath G., Thanigaivelan A., Sivarajasekar, N. and Banat, F. (2021), "Nano-activated carbon derived from date palm coir waste for efficient sequestration of noxious 2,4-dichlorophenoxyacetic acid herbicide", Chemosphere, 282, 131103, 1-12. https://doi.org/10.1016/j.chemosphere.2021.131103.
  30. Langmuir, I. (1916), "The constitution and fundamental properties of solids and liquids", J. Am. Chem. Soc., 38, 2221-2295. https://doi.org/10.1021/ja02268a002
  31. Manohar, D.M., Noeline, B.F. and Anirudhan, T.S. (2006), "Adsorption performance of Al-pillared bentonite clay for the removal of cobalt (II) from aqueous phase", App. Clay Sci., 31, 194-206. https://doi.org/10.1016/j.clay.2005.08.008.
  32. Melville, G., Liu, S.F. and Allen, B. (2006), "A theoretical model for the production of Ac-225 for cancer therapy by photon- induced transmutation of Ra-226", J. Appl. Radiat. Isotope, 64, 979-988. http://doi.org/10.1016/j. apradiso.2006.05.002.
  33. Misra, R.K., Jain, S.K. and Khatri, P.K. (2011), "Iminodiacetic acid functionalized cation exchange resin for adsorptive removal of Cr(VI), Cd(II), Ni(II) and Pb(II) from their aqueous solutions", J. Hazard. Mat., 185, 1508-1512. https://doi.org/10.1016/j.jhazmat.2010.10.077
  34. Mohan, S. and Sreelakshmi, G. (2008), "Fixed bed column study for heavy metal removal using phosphate treated rice husk", J. Hazard. Mat., 153, 75-82. http://doi.org/10.1016/j.jhazmat.2007.08.021.
  35. Muthusaravanan, S., Balasubramani, K., Suresh, R., Ganesh, R.S., Sivarajasekar, N., Arul, H., Rambabu, K., Bharath, G. Sathishkumar, V.E., Murthy, A.P. and Banat, F. (2021), "Adsorptive removal of noxious atrazine using graphene oxide nanosheets: Insights to process optimization, equilibrium, kinetics, and density functional theory calculations", Environ. Res., 200(111428), 1-13. https://doi.org/10.1016/j.envres.2021.111428
  36. Sureshkumar, N., Bhat S., Srinivasan S., Gnanasundaram N., Thanapalan M., Krishnamoorthy, R., Abuhimd H., Ahmed F. and Show, P.L. (2020), "Continuous phenol removal using a liquid-solid circulating fluidized Bed", Energies., 13(3839), 1-18. https://doi.org/10.3390/en13153839
  37. Plecas, I. and Dimovic, S. (2006), "Curing time effect on compressive strength and incremental leaching rates of 137Cs and 60Co in cement immobilized sludge", Prog. Nucl. Energ., 48, 629-633. https://doi.org/10.1016/j.pnucene.2006.06.012.
  38. Rafati, L., Mahvi, A.H., Asgari, A.R. and Hosseini, S.S. (2010), "Removal of chromium (VI) from aqueous solutions using Lewatit nano ion exchange resin", Int. J. Environ. Sci. Technol., 7,147-156. https://doi.org/10.1007/BF03326126.
  39. Rao, R.A.K. and Kashifuddin, M. (2012), "Adsorption properties of coriander seed powder (Coriandrum sativum): extraction and pre-concentration of Pb (II), Cu (II) and Zn (II) ions from aqueous solution" Adsort. Sci. Technol., 30, 127-146. https://doi.org/10.1260/0263-6174.30.2.127.
  40. Shao, Jing, Z., Wang, X., Li, J. and Meng, Y. (2009), "Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO2+2 from aqueous solution" J. Phys. Chem. Lett., 113, 860-864. http://doi.org/10.1021/jp8091094.
  41. Prasad, P.S., Gomathi, T., Sudha, P.N., Deepa, M., Rambabu, K., and Banat, F. (2022), "Biosilica/Silk Fibroin/Polyurethane biocomposite for toxic heavy metals removal from aqueous streams", Environ. Technol. Innov., 28(102741), 1-14. https://doi.org/ 10.1016/j.eti.2022.102741
  42. Tunali, S., Akar, T., Ozcan. A.S., Kiran, I. and Ozcan, A. (2006), "Equilibrium and kinetics of biosorption of lead (II) from aqueous solutions by Cephalosporium aphidicola", Sep. Purif. Technol., 47, 105-112. https://doi.org/10.1016/j.seppur.2005.06.009.
  43. Wang, X., Xu, D., Chen, L., Tan, X., Zhou, X., Ren, A., Chen, C. (2006), "Sorption and complexation of Eu(III) on alumina: effects of pH, ionic strength, humic acid and chelating resin on kinetic dissociation study", Appl. Radiact. Isotopes, 64, 414- 421. http://doi.org/10.1016/j.apradiso.2005.08.010.
  44. Zuloaga, P. andrade, I. and Martinez, M. (2006), "Some principles of service life calculation of reinforcements and in situ corrosion and monitoring by sensors in the radioactive waste containers of El Cabril disposal (Spain)", J. Nuclear Mater., 358, 82-95. http://doi.org/10.1016/ j.jnucmat.2006.06.015.