DOI QR코드

DOI QR Code

Impact of ABCB1 C3435T Polymorphism on Treatment Response of Vitamin K Antagonists: A Systematic Review and Meta-analysis

  • Received : 2022.08.19
  • Accepted : 2022.09.20
  • Published : 2022.09.30

Abstract

Objective: The aim of this study was to examine the impact of ATP-binding cassette subfamily B member 1 (ABCB1) C3435T polymorphism on the treatment response of patients to vitamin K antagonists (VKAs). Methods: In this systematic review and meta-analysis, the PubMed/Medline, Embase, and Cochrane Library databases were searched for eligible articles for the period up to November 2020. Articles that reported treatment response to VKAs according to the ABCB1 C3435T polymorphism were included in this study. Results: A total of 13 and 9 articles were included in the systematic review and meta-analysis, respectively. The weekly maintenance dose of warfarin was significantly lower in patients with the ABCB1 3435CT or TT polymorphism type than in those with the ABCB1 3435CC type (weighted mean difference [WMD], -2.53 mg/week; 95% confidence interval [CI], -3.64 to -1.43, p<0.001). However, the weekly maintenance dose of acenocoumarol was not significantly associated with the ABCB1 C3435T polymorphism (WMD, 1.02; 95% CI, -0.61 to 2.65, p=0.22). Conclusion: The ABCB1 C3435T polymorphism was significantly associated with the weekly maintenance dose of warfarin. Further research is needed to confirm the association between the ABCB1 C3435T polymorphism and the incidence rate of bleeding events.

Keywords

Acknowledgement

This paper was supported by Wonkwang University in 2021.

References

  1. Miyasaka Y, Barnes ME, Gersh BJ, et al. Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence. Circulation 2006;114(2):119-25. https://doi.org/10.1161/CIRCULATIONAHA.105.595140
  2. Go AS, Hylek EM, Phillips KA, et al. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. JAMA 2001;285(18):2370-5. https://doi.org/10.1001/jama.285.18.2370
  3. Zhu J, Alexander GC, Nazarian S, Segal JB, Wu AW. Trends and variation in oral anticoagulant choice in patients with atrial fibrillation, 2010-2017. Pharmacotherapy 2018;38(9):907-20. https://doi.org/10.1002/phar.2158
  4. Holbrook AM, Pereira JA, Labiris R, et al. Systematic overview of warfarin and its drug and food interactions. Arch Intern Med 2005;165(10):1095-106. https://doi.org/10.1001/archinte.165.10.1095
  5. Nutescu EA, Shapiro NL, Ibrahim S, West P. Warfarin and its interactions with foods, herbs and other dietary supplements. Expert Opin Drug Saf 2006;5(3):433-51. https://doi.org/10.1517/14740338.5.3.433
  6. Becker ML, van Uden R, Giezen TJ, Meijer K, Houtenbos I, van den Bemt P. Drug-drug interactions with metronidazole and itraconazole in patients using acenocoumarol. Eur J Clin Pharmacol 2020;76(10):1457-64. https://doi.org/10.1007/s00228-020-02930-z
  7. Shendre A, Parmar GM, Dillon C, Beasley TM, Limdi NA. Influence of age on warfarin dose, anticoagulation control, and risk of hemorrhage. Pharmacotherapy 2018;38(6):588-96. https://doi.org/10.1002/phar.2089
  8. Ajmi M, Omezzine A, Achour S, et al. Influence of genetic and nongenetic factors on acenocoumarol maintenance dose requirement in a Tunisian population. Eur J Clin Pharmacol 2018;74(6):711-22. https://doi.org/10.1007/s00228-018-2423-7
  9. Demirkan K, Stephens MA, Newman KP, Self TH. Response to warfarin and other oral anticoagulants: effects of disease states. South Med J 2000;93(5):448-54. https://doi.org/10.1097/00007611-200093050-00001
  10. Yanik MV, Irvin MR, Beasley TM, Jacobson PA, Julian BA, Limdi NA. Influence of kidney transplant status on warfarin dose, anticoagulation control, and risk of hemorrhage. Pharmacotherapy 2017;37(11):1366-73. https://doi.org/10.1002/phar.2032
  11. Johnson JA, Caudle KE, Gong L, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for pharmacogeneticsguided warfarin dosing: 2017 update. Clin Pharmacol Ther 2017;102(3):397-404. https://doi.org/10.1002/cpt.668
  12. Elkhazraji A, Bouaiti EA, Boulahyaoui H, et al. Effect of CYP2C9, VKORC1, CYP4F2, and GGCX gene variants and patient characteristics on acenocoumarol maintenance dose: Proposal for a dosing algorithm for Moroccan patients. Drug Discov Ther 2018;12(2):68-76. https://doi.org/10.5582/ddt.2017.01063
  13. Li W, Zhao P, Chen L, et al. Impact of CYP2C9, VKORC1, ApoE and ABCB1 polymorphisms on stable warfarin dose requirements in elderly Chinese patients. Pharmacogenomics 2020;21(2):101-10. https://doi.org/10.2217/pgs-2019-0139
  14. Tavares LC, Marcatto LR, Soares RAG, Krieger JE, Pereira AC, Santos P. Association between ABCB1 polymorphism and stable warfarin dose requirements in brazilian patients. Front Pharmacol 2018;9:542. https://doi.org/10.3389/fphar.2018.00542
  15. Rojo M, Roco AM, Suarez M, et al. Functionally significant coumarin-related variant alleles and time to therapeutic range in Chilean cardiovascular patients. Clin Appl Thromb Hemost 2020;26:1076029620909154.
  16. Sychev DA, Rozhkov AV, Kazakov RE, Ananichuk AV. The impact of CYP4F2, ABCB1, and GGCX polymorphisms on bleeding episodes associated with acenocoumarol in Russian patients with atrial fibrillation. Drug Metab Pers Ther 2016;31(3):173-8.
  17. Ieiri I. Functional significance of genetic polymorphisms in Pglycoprotein (MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). Drug Metab Pharmacokinet 2012;27(1):85-105. https://doi.org/10.2133/dmpk.DMPK-11-RV-098
  18. Gschwind L, Rollason V, Daali Y, Bonnabry P, Dayer P, Desmeules JA. Role of P-glycoprotein in the uptake/efflux transport of oral vitamin K antagonists and rivaroxaban through the Caco-2 cell model. Basic Clin Pharmacol Toxicol 2013;113(4):259-65. https://doi.org/10.1111/bcpt.12084
  19. Wessler JD, Grip LT, Mendell J, Giugliano RP. The P-glycoprotein transport system and cardiovascular drugs. J Am Coll Cardiol 2013;61(25):2495-502. https://doi.org/10.1016/j.jacc.2013.02.058
  20. Wolking S, Schaeffeler E, Lerche H, Schwab M, Nies AT. Impact of genetic polymorphisms of ABCB1 (MDR1, P-Glycoprotein) on drug disposition and potential clinical implications: Update of the literature. Clin Pharmacokinet 2015;54(7):709-35. https://doi.org/10.1007/s40262-015-0267-1
  21. Fung KL, Pan J, Ohnuma S, et al. MDR1 synonymous polymorphisms alter transporter specificity and protein stability in a stable epithelial monolayer. Cancer Res 2014;74(2):598-608. https://doi.org/10.1158/0008-5472.CAN-13-2064
  22. Kimchi-Sarfaty C, Oh JM, Kim IW, et al. A "silent" polymorphism in the MDR1 gene changes substrate specificity. Science 2007;315(5811):525-8. https://doi.org/10.1126/science.1135308
  23. Wang D, Johnson AD, Papp AC, Kroetz DL, Sadee W. Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C>T affects mRNA stability. Pharmacogenet Genomics 2005;15(10):693-704. https://doi.org/10.1097/01.fpc.0000178311.02878.83
  24. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISAM Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 2009;339:b2535. https://doi.org/10.1136/bmj.b2535
  25. Wells G, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Non-Randomized Studies in Meta-Analysis. 2000. Available from http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed December 15, 2020.
  26. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ WV. Cochrane Handbook for Systematic Reviews of Interventions version 6.1 (updated September 2020). Available from https://training.cochrane.org/handbook. Accessed December 28, 2020.
  27. Luo D, Wan X, Liu J, Tong T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat Methods Med Res 2018;27(6):1785-805. https://doi.org/10.1177/0962280216669183
  28. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 2014;14:135. https://doi.org/10.1186/1471-2288-14-135
  29. Ferrari M, Romualdi E, Dentali F, et al. Association between ABCG2 and ABCB1 genes and warfarin stability: a case-control study. Thromb Res 2014;134(6):1359-62. https://doi.org/10.1016/j.thromres.2014.09.017
  30. Kim Y, Smith A, Wu AH. C3435T polymorphism of MDR1 gene with warfarin resistance. Clin Chim Acta 2013;425:34-6. https://doi.org/10.1016/j.cca.2013.07.010
  31. Issac MS, El-Nahid MS, Wissa MY. Is there a role for MDR1, EPHX1 and protein Z gene variants in modulation of warfarin dosage? a study on a cohort of the Egyptian population. Mol Diagn Ther 2014;18(1):73-83. https://doi.org/10.1007/s40291-013-0055-2
  32. Gschwind L, Rollason V, Boehlen F, et al. P-glycoprotein: a clue to vitamin K antagonist stabilization. Pharmacogenomics 2015;16(2):129-36. https://doi.org/10.2217/pgs.14.164
  33. Saraeva RB, Paskaleva ID, Doncheva E, Eap CB, Ganev VS. Pharmacogenetics of acenocoumarol: CYP2C9, CYP2C19, CYP1A2, CYP3A4, CYP3A5 and ABCB1 gene polymorphisms and dose requirements. J Clin Pharm Ther 2007;32(6):641-9. https://doi.org/10.1111/j.1365-2710.2007.00870.x
  34. de Oliveira Almeida VC, Ribeiro DD, Gomes KB, Godard AL. Polymorphisms of CYP2C9, VKORC1, MDR1, APOE and UGT1A1 genes and the therapeutic warfarin dose in Brazilian patients with thrombosis: a prospective cohort study. Mol Diagn Ther 2014;18(6):675-83. https://doi.org/10.1007/s40291-014-0121-4
  35. Jimenez-Varo E, Canadas-Garre M, Gutierrez-Pimentel MJ, CallejaHernandez MA. Prediction of stable acenocoumarol dose by a pharmacogenetic algorithm. Pharmacogenet Genomics 2014;24(10):501-13. https://doi.org/10.1097/FPC.0000000000000082
  36. Wadelius M, Sorlin K, Wallerman O, et al. Warfarin sensitivity related to CYP2C9, CYP3A5, ABCB1 (MDR1) and other factors. Pharmacogenomics J. 2004;4(1):40-8. https://doi.org/10.1038/sj.tpj.6500220
  37. Campos EIF, Borges KBG, Mourao AOM, et al. [abstr] Weekly warfarin maintenance dose according to variations in four genes evaluated in patients assisted at a Brazilian anticoagulation clinic. Res Pract Thrombo Haemost 2018;2(Suppl 1):230-1.
  38. Bruhn O, Cascorbi I. Polymorphisms of the drug transporters ABCB1, ABCG2, ABCC2 and ABCC3 and their impact on drug bioavailability and clinical relevance. Expert Opin Drug Metab Toxicol. 2014;10(10):1337-54. https://doi.org/10.1517/17425255.2014.952630
  39. Shou W, Wang D, Zhang K, et al. Gene-wide characterization of common quantitative trait loci for ABCB1 mRNA expression in normal liver tissues in the Chinese population. PLoS One 2012;7(9):e46295. https://doi.org/10.1371/journal.pone.0046295
  40. Nakamura T, Sakaeda T, Horinouchi M, et al. Effect of the mutation (C3435T) at exon 26 of the MDR1 gene on expression level of MDR1 messenger ribonucleic acid in duodenal enterocytes of healthy Japanese subjects. Clin Pharmacol Ther 2002;71(4):297-303. https://doi.org/10.1067/mcp.2002.122055
  41. Mueller JA, Patel T, Halawa A, Dumitrascu A, Dawson NL. Warfarin dosing and body mass index. Ann Pharmacother 2014;48(5):584-8. https://doi.org/10.1177/1060028013517541
  42. Bonde AN, Lip GY, Kamper AL, et al. Effect of reduced renal function on time in therapeutic range among anticoagulated atrial fibrillation patients. J Am Coll Cardiol 2017;69(6):752-3.
  43. White PJ. Patient factors that influence warfarin dose response. J Pharm Pract 2010;23(3):194-204. https://doi.org/10.1177/0897190010362177
  44. Whirl-Carrillo M, McDonagh EM, Hebert JM, et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 2012;92(4):414-7. https://doi.org/10.1038/clpt.2012.96
  45. Vahedi S, Chufan EE, Ambudkar SV. Global alteration of the drugbinding pocket of human P-glycoprotein (ABCB1) by substitution of fifteen conserved residues reveals a negative correlation between substrate size and transport efficiency. Biochem Pharmacol 2017;143:53-64. https://doi.org/10.1016/j.bcp.2017.07.014
  46. Silva R, Vilas-Boas V, Carmo H, et al. Modulation of P-glycoprotein efflux pump: induction and activation as a therapeutic strategy. Pharmacol Ther 2015;149:1-123. https://doi.org/10.1016/j.pharmthera.2014.11.013
  47. Peng LL, Zhao YQ, Zhou ZY, et al. Associations of MDR1, TBXA2R, PLA2G7, and PEAR1 genetic polymorphisms with the platelet activity in Chinese ischemic stroke patients receiving aspirin therapy. Acta Pharmacol Sin 2016;37(11):1442-8. https://doi.org/10.1038/aps.2016.90
  48. Park MW, Her SH, Kim CJ, et al. Evaluation of the incremental prognostic value of the combination of CYP2C19 poor metabolizer status and ABCB1 3435 TT polymorphism over conventional risk factors for cardiovascular events after drug-eluting stent implantation in East Asians. Genet Med 2016;18(8):833-41. https://doi.org/10.1038/gim.2015.171
  49. Zhai Y, He H, Ma X, et al. Meta-analysis of effects of ABCB1 polymorphisms on clopidogrel response among patients with coronary artery disease. Eur J Clin Pharmacol 2017;73(7):843-54. https://doi.org/10.1007/s00228-017-2235-1
  50. Xie Q, Xiang Q, Mu G, et al. Effect of ABCB1 genotypes on the pharmacokinetics and clinical outcomes of new oral anticoagulants: a systematic review and meta-analysis. Curr Pharm Des 2018;24(30):3558-65. https://doi.org/10.2174/1381612824666181018153641