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RESTRICTION OF SCALARS WITH SIMPLE ENDOMORPHISM
ALGEBRA

HoseoG Yu

ABSTRACT. Suppose L/K be a finite abelian extension of number fields of odd
degree and suppose an abelian variety A defined over L is a K-variety. If the
endomorphism algebra of A/L is a field F, the followings are equivalent :

(1) The enodomorphiam algebra of the restriction of scalars from L to K is simple.
(2) There is no proper subfield of L containing L“* on which A has a K-variety
descent.

1. Introduction

Let K be a number field and L be a finite abelian extension of K of odd degree
with Galois group G = Gal(L/K). Let A be an abelian variety defined over L
whose endomorphism ring is denoted by Endj(A). Assume the endomorphism algebra
End;(A) ®z Q is a field. Denote End;(A) ®z Q by F. We suppose that A is a K-
variety, that is, for each o € G, 0(A) is L-isogenous to A. Write Resy,/x(A) together
with a morphism ¢: Resp x(A) — A for the restriction of scalars of A from L to K.
For the definitions and properties of the restriction of scalars, see [4, p.5] or [5, p.68].
We will prove the following main theorem.

MAIN THEOREM. The followings are equivalent.

1. Respk(A) is K-isogenous to a product B x --- x B of a simple abelian variety
B defined over K.

2. There is no proper subfield of L containing L®F on which A has a K-variety
descent.

Proof of Main Theorem will be given after LEMMA 6.
In [1, §15] and [3], there are some corollaries of this theorem when A is an elliptic
curve.

2. Simple algebra and descent

From the assumption that A is a K-variety, for each o € G, there is a L-isogeny

for0(A) = A.
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For b € Endp(A), we define b € Endg (Resr, ik (A)) satisfying $ob = bog. From the
universal mapping property of restriction of scalars, the existence and the uniqueness
of b for b € End(A) is obvious (see [4, p.5]). For details, see [5, Definition 4 in p.72].
For each 0 € G, define u, € Endg(Resy k(A)) such that ¢ ou, = f, o o(¢). There
is a similar definition in [5, Definition 1 in p.68]. Then the morphism u, exists and is
unique when the isogeny f,: 0(A) — A is given.

Define F' = {g € Endg(Resp/x(A)) |b e EndL(A)}(X)ZQ. Now we define the action

of G on F. Because f» is an isogeny, there is a dual isogeny morphism f): A — o(A)
such that f,of. is multiplication by deg( f,). Now for b € F there are a positive integer

m and by € End,(A) such that b = by® L. We define 7b = (faoa(bo)of;/)’v@@m.

It is clear that this action of G on Fis independent of the choice of f,. We can check
that uy,0b=%bowu, for b € F. N
We define a(o,7) = u, ou, ouy! € F* for 0,7 € G. Then « is a 2-cocycle from G

to F*. Define
aUEF}.

From &ougogouT = &o"gouoouT = ELOUBOOz(O',T)OuUT for a, b € F and for
o, T € GG, we can show that F'“G is a twisted group ring.

FoG = {Z @y 0 uy € Endg(Resy x(A)) @z Q

ceG

THEOREM 1. We get Endg (Resp/kx(A)) ®z Q = FoG.

Proof. Let tr: T(A) — [[,cq0(A) denote the inclusion map into the 7-th com-
ponent. Define the isomorphism ®: [[, o(A) — Resy/k(A) to be the the inverse
morphism of [[, o(¢): Respx(A) — [[,0(A). For f € Endg(Resr/k(A)) ®z Q,
define b, € F by b, = ¢po Bo® o1, 0 f71. Note that

qﬁoZZ;;ouU:Zbaofooa((b):Z(qﬁoﬁo@obaof;l)ofgoa(gb):(boﬁ.

g

Thus g = ZJI;:, o u, and Endg(Resr/k(A)) ®z Q C FeG. Then the theorem
follows. [

Define the isotropy subgroup of G by Gp = {0 € G|°b =10 for b € F }. Define G,
by {¢ € Gg| There is a, € End;(A)* such that u, o (a, o u,) = (ay © u,) o u, for
7 € G }. Then we replace f, with a, o f, for o € G, to define new u,’s. With these
newly defined u,’s,

G,={0€Gp|lu,ou, =u, ou, forr € G}.

Note that the endomorphism algebra F*G = Endg (Res 1/ (A)) ®z Q is semisimple
(see [2]) and the center of F'*G is (F)*G,.. Thus F°G is simple if and only if (F'¢)*G,
is a field.

THEOREM 2. The center (F¢)*G, of F*G is a field if and only if (F¢)*H is a field
for any prime order subgroup H of G,..

Proof. 1t is clear from the following lemma. O
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LEMMA 3. Let a finite abelian group G act on a number field M trivially. Define
$H ={H < G| H is a group of prime order.}. Let o be a 2-cocycle from G to M*.
Assume that the twisted group ring M*G is commutative and M“H is a field for
H e $. Then MG is a field.

Proof. With Sylow p-subgroups G,, of G, we get G = ®,G),. From section 3, M°G),
is a field. Because MG = @,M*G),, MG is a field. O

DEFINITION 4. An abelian variety A defined over L has a K-variety descent if
there are a proper subfield Ly of L containing L& and an abelian variety A, defined
over Lo such that Ay is L-isogenous to A and Ay is a K-variety, that is, o(Ag) is
Lg-isogenous to Aq for o € G.

THEOREM 5. Let a subgroup H of G, be of prime order p. Then (ﬁG)aH is a field
if and only if A doesn’t have a K-variety descent to L.

Proof. Assume A has a K-variety descent to L. Then (FC€)*H = FC[z]/ (z? — 1).
Therefore, (F¢)*H is not a field.

Suppose that (ﬁG)O‘H is not a field. Let 0 € H be a generator. Define f, =
frici 00 (f,) for 2 <i < p. Then uy: = ul. for 1 <i < panduf € FO. If 2P — uP is
irreducible in FC[z], (FY)*H is a field. Thus z? — u? is reducible in FC[z] and there
is a, € F such that @, € F¢ and u?, = a,”. Define g, = a;'o f,: 0(A) — A.

Let Resy pu(A) be the restriction of scalars of A from L to L with a morphism
V: Respu(A) — A. Define w, € Endpn(Resp,n(A)) ®z Q such that ¢ o w, =
9o © 0 (1)).

Define B = ( f;ol w;ﬁ_) Respypn(A). Then 1 is a morphism from B to A. By
restricting the domain of ¥ to B, we get g,00 (1)) = 1) because g,00(1))o (ZZ 0 ! ) =
Yow, o (i wy) = o (X ).

Define v : ResL/K(B) — Resp/k(A) by ¢ o ¢ = 1 o ¢p with the morphism
¢p: Respx(B) — B. We know that u,; o u, = u, ou, for 7 € G and 0 € G,.
Thus w, o (a(7 1ou(,) (df7 1oug)ouT for 7 € G and o € G,.

Then ¢t o u, ouy 0 ¢) = P~ 1ou(,ouTow Note ¢p o ! o ur o uy o1
Vo frox(y) o (r0)(¢p) and ¢p ot ouy 0 us 0t = (¢ 10f707(¢)) o (o7)(¢5
Then o(¢p=to fro7()) =¥ o fror(¢): 7(B) — B. That is 1o f, o 7( )
defined over LY.

D“VII

LEMMA 6. Suppose that A has a K-variety descent on LY for a subgroup H of
Gpr. Then H < G,.

Proof. We may assume that the abelian varity A is defined over L and for o € G,
o(A) is Lf-isogenous to A. We can assume fy = ids for § € H. Pick § € H and

7 € G. Note that 0(f,) = f-. Now gou,oug = f,o(70)(¢) and pougou, = f,o(67)(¢).
Since G is abelian, u,; o ug = ug o u,. Thus 6 € G, and H < G,. O

PROOF OF MAIN THEOREM. The following equivalences prove Main Theorem.

Resp ik (A) is K-isogenous to a product B x --- x B of a simple abelian variety B
defined over K.

)

FeG s simple.
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{ by the statement after THEOREM 1
(FE)@, is a field.
{ by THEOREM 2
(FE)*H is a field for any prime order subgroup H of G,.
{ by THEOREM 5
A doesn’t have a K-variety descent to L for any prime order subgroup H of G,.
{ by LEMMA 6
There is no proper subfield of L containing L°F on which A has a K-variety descent.
O

COROLLARY 7. Let K be finite Galois extension over Q which is a primitive totally
complex. Let L be an abelian extension of K and let A be an abelian variety defined
over L. We assume that L is the field of moduli and that A is a K-variety, that is, for
each o € Gal(L/K), 0(A) and A are L-isogenous. Assume that there is no K-variety
descent of A on M such that K < M < L. Then Resy,/k(A) has only one simple factor
up to isogeny over K, that is, the endomorphism algebra Endg(Resp/x(A)) ®z Q is
simple.

THEOREM 8. [3] Let E be an elliptic curve such that F = End’(E) is a quadratic
imaginary number field. Let j be the j-invariant of E. Assume that E is defined over
the Hilbert class field F(j) of F' and F = EndOF(j)(E). Assume that E is an F-curve.

Then Respj)/r(£) has only one simple factor.

Proof. Tt is well-known that there is no descent of E to a proper subfield of F ().
From the above corollary, the theorem follows. O]

Assume that G acts trivially on F. Define f(o,7) = a(o,7)/a(r,0). We can
show that (8 is a bilinear antisymmetric pairing from G x G to pp, where pp is the
set of roots of unity in F. Then it is easy to show that 8(G,,G) = 5(G,G,) = 1.
Moreover, the induced pairing from G/G, x G/G, to up is non-degenerate bilinear
antisymmetric. In the theorem of Nakamura, we know that if the class number of F
is not 1, then pp = {£1}. Therefore, G/G, = (Z/2Z)™ & (Z/2Z)". Then F*G =
(F*G,)*(G/G,). Denote by D; central simple quaternion algebra with center F*G,.
Then F*G = D ® -+ ® D,,. Now FG = Mym (F“G,.) or F*G = Mam-1(D), where
D is a central simple quaternion algebra with center F*G,.

THEOREM 9. [1, §15] Let E be an elliptic curve such that F = End’(E) is a
quadratic imaginary number field. Let j be the j-invariant of E. Assume that E is
defined over Q(j) and F = End%(j)(E). Assume that F is a Q-curve and [Q(j): Q]
is odd. Then Resq;)/q(E) is simple.

Proof. In a similar way, we can show that Resq(;)/q(F) has only one simple factor.
Since [G: G,] is odd, G = G,. Therefore, F*G is a field. Then Resq(;)/q(F) is
simple. O

3. Lemmas

Assume that G is a finite abelian p-group with an odd prime p. The group G acts
on a number field M trivially. With a 2-cocycle a from G to M >, we assume that the
twisted group ring MG = {>__ a,u, |a, € M and o € G } is commutative. Assume
that for any cyclic subgroup H of G of order p, M“H is a field.
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LEMMA 10. Let v € C be a root of a polynomial 2¥° — a € M|z] such that
[M(v): M] =p. Then M(~*) = M.

Proof. We assume that M(y?) = M(y). Then [M(~?,(,): M((,)] = p with a
primitive p-th root of unity ¢,. Now we choose a generator ¢ in Gal(M (v?, (,)/M((p))
such that §(7?) = 4P¢,. Thus n = §(y)y"t € M(4?,(,) is a primitive p*>-th root
of unity. Then 6(n) = n* with & = 1 (mod p). Now v = d°(y) = 1P, which is
impossible. Therefore, M C M (y?) C M (7). O

LEMMA 11. Assume that o € C is a solution of an irreducible polynomial xP —
d € Mlz]. If e» € M for e € M(«), then e = ba' with b € M and an integer
tO<t<p—1).

Proof. Note that [M(a) : M] = p. With a p-th root of unity (,, we know
[M(a, ) + M((,)] = p. Write e = Y77 e;af with e; € M. Let 6 be a generator
of Gal(M(a,¢,)/M((p)) such that d(a) = (. Because e? € M, d(e) = eC), for an
integer ¢ (0 <t < p—1). Thus from 37" e;(a(,)’ = SV e;aiCl, we get e = eal. [

LEMMA 12. Assume that for a subgroup J of G, M*J is a field. For a positive
integer m and a € M®J, if a*" € M, then a = cu, withc € M and o € J.

Proof. Let J = Jy & Z/p"Z. Assume that the lemma is true for M*Jy. Let
M1 - MaJ().

Assume that m = 1 and that the lemma is true for M{*.J; where J; = pZ/p"Z.
With a generator 7 of Z/p"Z, M{M(Z/p"Z) = M{J,(u,) and [M{Jy(uy) : MY Jq] = p.
From the previous lemma, we get a = a;u’. with a; € M{*.J; and a nonnegative integer
t.

Assume n > 2. Let Jo = p*Z/p"Z. Assuming t # 0, then o} ¢ M@J, but
a?" € M®Jy. Then we get MOJ; = M8 Jy(a,) = M Jo(a?) and [M2Jy(ay): M&Js) = p
From Lemma 10, it is not possible. Therefore, n =1 and u? € M. Since a; € M; and
al € M, a; = cu, with ¢ € M and o € Jy. Thus for m = 1 the lemma is true.

Assume that the lemma is true for m = k, that is, if a?" € My, then a = ayu,
where a; € My and 0 € Z/p"Z. Assume e M;. Then a? = bu, with b € M; and
o € Z/p"Z. If o is a generator of Z/p"Z, then o ¢ M{(pZ/p"Z) but ab’ = bPul €
MY(pZ/p"Z). From Lemma 10 it is impossible. Therefore, o is not a generator of
Z/p"Z. Thus from Lemma 11 a = cu, such that ¢ € M;(u,) and 77 = 0. Note that
c¢® € M;. Thus there are § €< o > and ¢ € M; such that ¢ = cjus. We know

k+1

¢/ € M. Thus a = du,usu,. We prove the lemma. ]

LEMMA 13. Let a finite abelian p-group G act on a number field M trivially. Let «
be a 2-cocycle in Z*(G, M*). Assume that M®G is commutative and for any subgroup
H of G of order p, M®H is a field. Then M“G is a field.

Proof. We will prove this by induction. Let J = Jy & Z/p"Z be a subgroup of G
and 7 be a generator for Z/p"Z. Let J; = Jy @ pZ/p"Z. Assume that M*J; is a
field and M“J is not a field. Since u? € M®J;, we know that 27 — u? € M J,[x] is
reducible. Then there is a solution b € M*J; of 27 —u? = 0. Since b*" = u?" € M, by
Lemma 12, we get b = cu, with o € J;. Note that (u,u; )P = vPu? = bPu ? = cP.
Then 77 = o and M* (to~') is not a field, which contradicts the assumption. O
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