RESTRICTION OF SCALARS WITH SIMPLE ENDOMORPHISM ALGEBRA

Hoseog Yu

Abstract

Suppose L / K be a finite abelian extension of number fields of odd degree and suppose an abelian variety A defined over L is a K-variety. If the endomorphism algebra of A / L is a field F, the followings are equivalent : (1) The enodomorphiam algebra of the restriction of scalars from L to K is simple. (2) There is no proper subfield of L containing $L^{G_{F}}$ on which A has a K-variety descent.

1. Introduction

Let K be a number field and L be a finite abelian extension of K of odd degree with Galois group $G=\operatorname{Gal}(L / K)$. Let A be an abelian variety defined over L whose endomorphism ring is denoted by $\operatorname{End}_{L}(A)$. Assume the endomorphism algebra $\operatorname{End}_{L}(A) \otimes_{\mathbf{Z}} \mathbf{Q}$ is a field. Denote $\operatorname{End}_{L}(A) \otimes_{\mathbf{Z}} \mathbf{Q}$ by F. We suppose that A is a $K-$ variety, that is, for each $\sigma \in G, \sigma(A)$ is L-isogenous to A. Write $\operatorname{Res}_{L / K}(A)$ together with a morphism $\phi: \operatorname{Res}_{L / K}(A) \rightarrow A$ for the restriction of scalars of A from L to K. For the definitions and properties of the restriction of scalars, see [4, p.5] or [5, p.68]. We will prove the following main theorem.

Main Theorem. The followings are equivalent.

1. $\operatorname{Res}_{L / K}(A)$ is K-isogenous to a product $B \times \cdots \times B$ of a simple abelian variety B defined over K.
2. There is no proper subfield of L containing $L^{G_{F}}$ on which A has a K-variety descent.

Proof of Main Theorem will be given after Lemma 6.
In $[1, \S 15]$ and $[3]$, there are some corollaries of this theorem when A is an elliptic curve.

2. Simple algebra and descent

From the assumption that A is a K-variety, for each $\sigma \in G$, there is a L-isogeny $f_{\sigma}: \sigma(A) \rightarrow A$.

[^0]For $b \in \operatorname{End}_{L}(A)$, we define $\widetilde{b} \in \operatorname{End}_{K}\left(\operatorname{Res}_{L / K}(A)\right)$ satisfying $\phi \circ \widetilde{b}=b \circ \phi$. From the universal mapping property of restriction of scalars, the existence and the uniqueness of \widetilde{b} for $b \in \operatorname{End}_{L}(A)$ is obvious (see [4, p.5]). For details, see [5, Definition 4 in p.72]. For each $\sigma \in G$, define $u_{\sigma} \in \operatorname{End}_{K}\left(\operatorname{Res}_{L / K}(A)\right)$ such that $\phi \circ u_{\sigma}=f_{\sigma} \circ \sigma(\phi)$. There is a similar definition in [5, Definition 1 in p.68]. Then the morphism u_{σ} exists and is unique when the isogeny $f_{\sigma}: \sigma(A) \rightarrow A$ is given.

Define $\widetilde{F}=\left\{\widetilde{b} \in \operatorname{End}_{K}\left(\operatorname{Res}_{L / K}(A)\right) \mid b \in \operatorname{End}_{L}(A)\right\} \otimes_{\mathbf{Z}} \mathbf{Q}$. Now we define the action of G on \widetilde{F}. Because f_{σ} is an isogeny, there is a dual isogeny morphism $f_{\sigma}^{\vee}: A \rightarrow \sigma(A)$ such that $f_{\sigma} \circ f_{\sigma}^{\vee}$ is multiplication by $\operatorname{deg}\left(f_{\sigma}\right)$. Now for $b \in F$ there are a positive integer m and $b_{0} \in \operatorname{End}_{L}(A)$ such that $b=b_{0} \otimes \frac{1}{m}$. We define $\sigma \widetilde{b}=\left(f_{\sigma} \circ \sigma\left(b_{0}\right) \circ f_{\sigma}^{\vee}\right)^{\sim} \otimes \frac{1}{m \cdot \operatorname{deg}\left(f_{\sigma}\right)}$. It is clear that this action of G on \widetilde{F} is independent of the choice of f_{σ}. We can check that $u_{\sigma} \circ \widetilde{b}=\sigma \widetilde{b} \circ u_{\sigma}$ for $b \in F$.

We define $\alpha(\sigma, \tau)=u_{\sigma} \circ u_{\tau} \circ u_{\sigma \tau}^{-1} \in \widetilde{F}^{\times}$for $\sigma, \tau \in G$. Then α is a 2-cocycle from G to \widetilde{F}^{\times}. Define

$$
\widetilde{F}^{\alpha} G=\left\{\sum_{\sigma \in G} \widetilde{a_{\sigma}} \circ u_{\sigma} \in \operatorname{End}_{K}\left(\operatorname{Res}_{L / K}(A)\right) \otimes_{\mathbf{Z}} \mathbf{Q} \mid a_{\sigma} \in F\right\} .
$$

From $\tilde{a} \circ u_{\sigma} \circ \tilde{b} \circ u_{\tau}=\tilde{a} \circ \sigma \tilde{b} \circ u_{\sigma} \circ u_{\tau}=\tilde{a} \circ \sigma \tilde{b} \circ \alpha(\sigma, \tau) \circ u_{\sigma \tau}$ for $a, b \in F$ and for $\sigma, \tau \in G$, we can show that $\widetilde{F}^{\alpha} G$ is a twisted group ring.

Theorem 1. We get $\operatorname{End}_{K}\left(\operatorname{Res}_{L / K}(A)\right) \otimes_{\mathbf{Z}} \mathbf{Q}=\widetilde{F}^{\alpha} G$.
Proof. Let $\iota_{\tau}: \tau(A) \rightarrow \prod_{\sigma \in G} \sigma(A)$ denote the inclusion map into the τ-th component. Define the isomorphism $\Phi: \prod_{\sigma} \sigma(A) \rightarrow \operatorname{Res}_{L / K}(A)$ to be the the inverse morphism of $\prod_{\sigma} \sigma(\phi): \operatorname{Res}_{L / K}(A) \rightarrow \prod_{\sigma} \sigma(A)$. For $\beta \in \operatorname{End}_{K}\left(\operatorname{Res}_{L / K}(A)\right) \otimes_{\mathbf{Z}} \mathbf{Q}$, define $b_{\sigma} \in F$ by $b_{\sigma}=\phi \circ \beta \circ \Phi \circ \iota_{\sigma} \circ f_{\sigma}^{-1}$. Note that

$$
\phi \circ \sum_{\sigma} \widetilde{b_{\sigma}} \circ u_{\sigma}=\sum_{\sigma} b_{\sigma} \circ f_{\sigma} \circ \sigma(\phi)=\sum_{\sigma}\left(\phi \circ \beta \circ \Phi \circ \iota_{\sigma} \circ f_{\sigma}^{-1}\right) \circ f_{\sigma} \circ \sigma(\phi)=\phi \circ \beta .
$$

Thus $\beta=\sum_{\sigma} \widetilde{b_{\sigma}} \circ u_{\sigma}$ and $\operatorname{End}_{K}\left(\operatorname{Res}_{L / K}(A)\right) \otimes_{\mathbf{Z}} \mathbf{Q} \subseteq \widetilde{F}^{\alpha} G$. Then the theorem follows.

Define the isotropy subgroup of G by $G_{F}=\left\{\left.\sigma \in G\right|^{\sigma} \widetilde{b}=\widetilde{b}\right.$ for $\left.b \in F\right\}$. Define G_{r} by $\left\{\sigma \in G_{F} \mid\right.$ There is $a_{\sigma} \in \operatorname{End}_{L}(A)^{\times}$such that $u_{\tau} \circ\left(\widetilde{a_{\sigma}} \circ u_{\sigma}\right)=\left(\widetilde{a_{\sigma}} \circ u_{\sigma}\right) \circ u_{\tau}$ for $\tau \in G\}$. Then we replace f_{σ} with $a_{\sigma} \circ f_{\sigma}$ for $\sigma \in G_{r}$ to define new u_{σ} 's. With these newly defined u_{σ} 's,

$$
G_{r}=\left\{\sigma \in G_{F} \mid u_{\tau} \circ u_{\sigma}=u_{\sigma} \circ u_{\tau} \text { for } \tau \in G\right\} .
$$

Note that the endomorphism algebra $\widetilde{F}^{\alpha} G=\operatorname{End}_{K}\left(\operatorname{Res}_{L / K}(A)\right) \otimes_{\mathbf{Z}} \mathbf{Q}$ is semisimple (see [2]) and the center of $\widetilde{F}^{\alpha} G$ is $\left(\widetilde{F}^{G}\right)^{\alpha} G_{r}$. Thus $\widetilde{F}^{\alpha} G$ is simple if and only if $\left(\widetilde{F}^{G}\right)^{\alpha} G_{r}$ is a field.

Theorem 2. The center $\left(\widetilde{F}^{G}\right)^{\alpha} G_{r}$ of $\widetilde{F}^{\alpha} G$ is a field if and only if $\left(\widetilde{F}^{G}\right)^{\alpha} H$ is a field for any prime order subgroup H of G_{r}.

Proof. It is clear from the following lemma.

Lemma 3. Let a finite abelian group G act on a number field M trivially. Define $\mathfrak{H}=\{H \leq G \mid H$ is a group of prime order. $\}$. Let α be a 2-cocycle from G to M^{\times}. Assume that the twisted group ring $M^{\alpha} G$ is commutative and $M^{\alpha} H$ is a field for $H \in \mathfrak{H}$. Then $M^{\alpha} G$ is a field.

Proof. With Sylow p-subgroups G_{p} of G, we get $G=\oplus_{p} G_{p}$. From section 3, $M^{\alpha} G_{p}$ is a field. Because $M^{\alpha} G \cong \otimes_{p} M^{\alpha} G_{p}, M^{\alpha} G$ is a field.

Definition 4. An abelian variety A defined over L has a K-variety descent if there are a proper subfield L_{0} of L containing $L^{G_{F}}$ and an abelian variety A_{0} defined over L_{0} such that A_{0} is L-isogenous to A and A_{0} is a K-variety, that is, $\sigma\left(A_{0}\right)$ is L_{0}-isogenous to A_{0} for $\sigma \in G$.

Theorem 5. Let a subgroup H of G_{r} be of prime order p. Then $\left(\widetilde{F}^{G}\right)^{\alpha} H$ is a field if and only if A doesn't have a K-variety descent to L^{H}.

Proof. Assume A has a K-variety descent to L^{H}. Then $\left(\widetilde{F}^{G}\right)^{\alpha} H \cong F^{G}[x] /\left\langle x^{p}-1\right\rangle$. Therefore, $\left(\widetilde{F}^{G}\right)^{\alpha} H$ is not a field.

Suppose that $\left(\widetilde{F}^{G}\right)^{\alpha} H$ is not a field. Let $\sigma \in H$ be a generator. Define $f_{\sigma^{i}}=$ $f_{\sigma^{i-1}} \circ \sigma^{i-1}\left(f_{\sigma}\right)$ for $2 \leq i \leq p$. Then $u_{\sigma^{i}}=u_{\sigma}^{i}$ for $1 \leq i \leq p$ and $u_{\sigma}^{p} \in \widetilde{F}^{G}$. If $x^{p}-u_{\sigma}^{p}$ is irreducible in $\widetilde{F}^{G}[x],\left(\widetilde{F}^{G}\right)^{\alpha} H$ is a field. Thus $x^{p}-u_{\sigma}^{p}$ is reducible in $\widetilde{F}^{G}[x]$ and there is $a_{\sigma} \in F$ such that $\widetilde{a_{\sigma}} \in \widetilde{F}^{G}$ and $u_{\sigma}^{p}=\widetilde{a_{\sigma}}{ }^{p}$. Define $g_{\sigma}=a_{\sigma}^{-1} \circ f_{\sigma}: \sigma(A) \rightarrow A$.

Let $\operatorname{Res}_{L / L^{H}}(A)$ be the restriction of scalars of A from L to L^{H} with a morphism $\psi: \operatorname{Res}_{L / L^{H}}(A) \rightarrow A$. Define $w_{\sigma} \in \operatorname{End}_{L^{H}}\left(\operatorname{Res}_{L / L^{H}}(A)\right) \otimes_{\mathbf{Z}} \mathbf{Q}$ such that $\psi \circ w_{\sigma}=$ $g_{\sigma} \circ \sigma(\psi)$.

Define $B=\left(\sum_{i=0}^{p-1} w_{\sigma}^{i}\right) \operatorname{Res}_{L / L^{H}}(A)$. Then ψ is a morphism from B to A. By restricting the domain of ψ to B, we get $g_{\sigma} \circ \sigma(\psi)=\psi$ because $g_{\sigma} \circ \sigma(\psi) \circ\left(\sum_{i=0}^{p-1} w_{\sigma}^{i}\right)=$ $\psi \circ w_{\sigma} \circ\left(\sum_{i=0}^{p-1} w_{\sigma}^{i}\right)=\psi \circ\left(\sum_{i=0}^{p-1} w_{\sigma}^{i}\right)$.

Define $\widetilde{\psi}: \operatorname{Res}_{L / K}(B) \rightarrow \operatorname{Res}_{L / K}(A)$ by $\phi \circ \widetilde{\psi}=\psi \circ \phi_{B}$ with the morphism $\phi_{B}: \operatorname{Res}_{L / K}(B) \rightarrow B$. We know that $u_{\tau} \circ u_{\sigma}=u_{\sigma} \circ u_{\tau}$ for $\tau \in G$ and $\sigma \in G_{r}$. Thus $u_{\tau} \circ\left({\widetilde{a_{\sigma}}}^{-1} \circ u_{\sigma}\right)=\left({\widetilde{a_{\sigma}}}^{-1} \circ u_{\sigma}\right) \circ u_{\tau}$ for $\tau \in G$ and $\sigma \in G_{r}$.

Then $\widetilde{\psi}^{-1} \circ u_{\tau} \circ u_{\sigma} \circ \widetilde{\psi}=\widetilde{\psi}^{-1} \circ u_{\sigma} \circ u_{\tau} \circ \widetilde{\psi}$. Note $\phi_{B} \circ \widetilde{\psi}^{-1} \circ u_{\tau} \circ u_{\sigma} \circ \widetilde{\psi}=$ $\psi^{-1} \circ f_{\tau} \circ x(\psi) \circ(\tau \sigma)\left(\phi_{B}\right)$ and $\phi_{B} \circ \tilde{\psi}^{-1} \circ u_{\sigma} \circ u_{\tau} \circ \widetilde{\psi}=\sigma\left(\psi^{-1} \circ f_{\tau} \circ \tau(\psi)\right) \circ(\sigma \tau)\left(\phi_{B}\right)$. Then $\sigma\left(\psi^{-1} \circ f_{\tau} \circ \tau(\psi)\right)=\psi^{-1} \circ f_{\tau} \circ \tau(\psi): \tau(B) \rightarrow B$. That is $\psi^{-1} \circ f_{\tau} \circ \tau(\psi)$ is defined over L^{H}.

Lemma 6. Suppose that A has a K-variety descent on L^{H} for a subgroup H of G_{F}. Then $H \leq G_{r}$.

Proof. We may assume that the abelian varity A is defined over L^{H} and for $\sigma \in G$, $\sigma(A)$ is L^{H}-isogenous to A. We can assume $f_{\theta}=i d_{A}$ for $\theta \in H$. Pick $\theta \in H$ and $\tau \in G$. Note that $\theta\left(f_{\tau}\right)=f_{\tau}$. Now $\phi \circ u_{\tau} \circ u_{\theta}=f_{\tau} \circ(\tau \theta)(\phi)$ and $\phi \circ u_{\theta} \circ u_{\tau}=f_{\tau} \circ(\theta \tau)(\phi)$. Since G is abelian, $u_{\tau} \circ u_{\theta}=u_{\theta} \circ u_{\tau}$. Thus $\theta \in G_{r}$ and $H \leq G_{r}$.

Proof of Main Theorem. The following equivalences prove Main Theorem. $\operatorname{Res}_{L / K}(A)$ is K-isogenous to a product $B \times \cdots \times B$ of a simple abelian variety B defined over K.

I
$\widetilde{F}^{\alpha} G$ is simple.
\Uparrow by the statement after Theorem 1
$\left(\widetilde{F}^{G}\right)^{\alpha} G_{r}$ is a field.
I by Theorem 2
$\left(\widetilde{F}^{G}\right)^{\alpha} H$ is a field for any prime order subgroup H of G_{r}.
\Uparrow by Theorem 5
A doesn't have a K-variety descent to L^{H} for any prime order subgroup H of G_{r}.
I by Lemma 6
There is no proper subfield of L containing $L^{G_{F}}$ on which A has a K-variety descent.

Corollary 7. Let K be finite Galois extension over \mathbf{Q} which is a primitive totally complex. Let L be an abelian extension of K and let A be an abelian variety defined over L. We assume that L is the field of moduli and that A is a K-variety, that is, for each $\sigma \in \operatorname{Gal}(L / K), \sigma(A)$ and A are L-isogenous. Assume that there is no K-variety descent of A on M such that $K \leq M \supsetneqq L$. Then $\operatorname{Res}_{L / K}(A)$ has only one simple factor up to isogeny over K, that is, the endomorphism algebra $\operatorname{End}_{K}\left(\operatorname{Res}_{L / K}(A)\right) \otimes \mathbf{Z} \mathbf{Q}$ is simple.

Theorem 8. [3] Let E be an elliptic curve such that $F=\operatorname{End}^{0}(E)$ is a quadratic imaginary number field. Let j be the j-invariant of E. Assume that E is defined over the Hilbert class field $F(j)$ of F and $F=\operatorname{End}_{F(j)}^{0}(E)$. Assume that E is an F-curve. Then $\operatorname{Res}_{F(j) / F}(E)$ has only one simple factor.

Proof. It is well-known that there is no descent of E to a proper subfield of $F(j)$. From the above corollary, the theorem follows.

Assume that G acts trivially on F. Define $\beta(\sigma, \tau)=\alpha(\sigma, \tau) / \alpha(\tau, \sigma)$. We can show that β is a bilinear antisymmetric pairing from $G \times G$ to μ_{F}, where μ_{F} is the set of roots of unity in F. Then it is easy to show that $\beta\left(G_{r}, G\right)=\beta\left(G, G_{r}\right)=1$. Moreover, the induced pairing from $G / G_{r} \times G / G_{r}$ to μ_{F} is non-degenerate bilinear antisymmetric. In the theorem of Nakamura, we know that if the class number of F is not 1 , then $\mu_{F}=\{ \pm 1\}$. Therefore, $G / G_{r} \cong(\mathbf{Z} / 2 \mathbf{Z})^{m} \oplus(\mathbf{Z} / 2 \mathbf{Z})^{m}$. Then $F^{\alpha} G \cong$ $\left(F^{\alpha} G_{r}\right)^{\alpha}\left(G / G_{r}\right)$. Denote by D_{i} central simple quaternion algebra with center $F^{\alpha} G_{r}$. Then $F^{\alpha} G \cong D_{1} \otimes \cdots \otimes D_{m}$. Now $F^{\alpha} G \cong M_{2^{m}}\left(F^{\alpha} G_{r}\right)$ or $F^{\alpha} G \cong M_{2^{m-1}}(D)$, where D is a central simple quaternion algebra with center $F^{\alpha} G_{r}$.

Theorem 9. [1, §15] Let E be an elliptic curve such that $F=\operatorname{End}^{0}(E)$ is a quadratic imaginary number field. Let j be the j-invariant of E. Assume that E is defined over $\mathbf{Q}(j)$ and $F=\operatorname{End}_{F(j)}^{0}(E)$. Assume that E is a \mathbf{Q}-curve and $[\mathbf{Q}(j): \mathbf{Q}]$ is odd. Then $\operatorname{Res}_{\mathbf{Q}(j) / \mathbf{Q}}(E)$ is simple.

Proof. In a similar way, we can show that $\operatorname{Res}_{\mathbf{Q}(j) / \mathbf{Q}}(E)$ has only one simple factor. Since $\left[G: G_{r}\right]$ is odd, $G=G_{r}$. Therefore, $F^{\alpha} G$ is a field. Then $\operatorname{Res}_{\mathbf{Q}(j) / \mathbf{Q}}(E)$ is simple.

3. Lemmas

Assume that G is a finite abelian p-group with an odd prime p. The group G acts on a number field M trivially. With a 2-cocycle α from G to M^{\times}, we assume that the twisted group ring $M^{\alpha} G=\left\{\sum_{\sigma} a_{\sigma} u_{\sigma} \mid a_{\sigma} \in M\right.$ and $\left.\sigma \in G\right\}$ is commutative. Assume that for any cyclic subgroup H of G of order $p, M^{\alpha} H$ is a field.

Lemma 10. Let $\gamma \in \mathbf{C}$ be a root of a polynomial $x^{p^{2}}-a \in M[x]$ such that $[M(\gamma): M]=p$. Then $M\left(\gamma^{p}\right)=M$.

Proof. We assume that $M\left(\gamma^{p}\right)=M(\gamma)$. Then $\left[M\left(\gamma^{p}, \zeta_{p}\right): M\left(\zeta_{p}\right)\right]=p$ with a primitive p-th root of unity ζ_{p}. Now we choose a generator δ in $\operatorname{Gal}\left(M\left(\gamma^{p}, \zeta_{p}\right) / M\left(\zeta_{p}\right)\right)$ such that $\delta\left(\gamma^{p}\right)=\gamma^{p} \zeta_{p}$. Thus $\eta=\delta(\gamma) \gamma^{-1} \in M\left(\gamma^{p}, \zeta_{p}\right)$ is a primitive p^{2}-th root of unity. Then $\delta(\eta)=\eta^{k}$ with $k \equiv 1(\bmod p)$. Now $\gamma=\delta^{p}(\gamma)=\gamma \eta^{p}$, which is impossible. Therefore, $M \subseteq M\left(\gamma^{p}\right) \subsetneq M(\gamma)$.

Lemma 11. Assume that $\alpha \in \mathbf{C}$ is a solution of an irreducible polynomial $x^{p}-$ $d \in M[x]$. If $e^{p} \in M$ for $e \in M(\alpha)$, then $e=b \alpha^{t}$ with $b \in M$ and an integer $t(0 \leq t \leq p-1)$.

Proof. Note that $[M(\alpha): M]=p$. With a p-th root of unity ζ_{p}, we know $\left[M\left(\alpha, \zeta_{p}\right): M\left(\zeta_{p}\right)\right]=p$. Write $e=\sum_{i=0}^{p-1} e_{i} \alpha^{i}$ with $e_{i} \in M$. Let δ be a generator of $\operatorname{Gal}\left(M\left(\alpha, \zeta_{p}\right) / M\left(\zeta_{p}\right)\right)$ such that $\delta(\alpha)=\zeta_{p} \alpha$. Because $e^{p} \in M, \delta(e)=e \zeta_{p}^{t}$ for an integer $t(0 \leq t \leq p-1)$. Thus from $\sum_{i=0}^{p-1} e_{i}\left(\alpha \zeta_{p}\right)^{i}=\sum_{i=0}^{p-1} e_{i} \alpha^{i} \zeta_{p}^{t}$, we get $e=e_{t} \alpha^{t}$.

Lemma 12. Assume that for a subgroup J of $G, M^{\alpha} J$ is a field. For a positive integer m and $a \in M^{\alpha} J$, if $a^{p^{m}} \in M$, then $a=c u_{\sigma}$ with $c \in M$ and $\sigma \in J$.

Proof. Let $J=J_{0} \oplus \mathbf{Z} / p^{n} \mathbf{Z}$. Assume that the lemma is true for $M^{\alpha} J_{0}$. Let $M_{1}=M^{\alpha} J_{0}$.

Assume that $m=1$ and that the lemma is true for $M_{1}^{\alpha} J_{1}$ where $J_{1}=p \mathbf{Z} / p^{n} \mathbf{Z}$. With a generator τ of $\mathbf{Z} / p^{n} \mathbf{Z}, M_{1}^{\alpha}\left(\mathbf{Z} / p^{n} \mathbf{Z}\right)=M_{1}^{\alpha} J_{1}\left(u_{\tau}\right)$ and $\left[M_{1}^{\alpha} J_{1}\left(u_{\tau}\right): M_{1}^{\alpha} J_{1}\right]=p$. From the previous lemma, we get $a=a_{t} u_{\tau}^{t}$ with $a_{t} \in M_{1}^{\alpha} J_{1}$ and a nonnegative integer t.

Assume $n \geq 2$. Let $J_{2}=p^{2} \mathbf{Z} / p^{n} \mathbf{Z}$. Assuming $t \neq 0$, then $a_{t}^{p} \notin M_{1}^{\alpha} J_{2}$ but $a_{t}^{p^{2}} \in M^{\alpha} J_{2}$. Then we get $M_{1}^{\alpha} J_{1}=M_{1}^{\alpha} J_{2}\left(a_{t}\right)=M_{1}^{\alpha} J_{2}\left(a_{t}^{p}\right)$ and $\left[M_{1}^{\alpha} J_{2}\left(a_{t}\right): M_{1}^{\alpha} J_{2}\right]=p$. From Lemma 10, it is not possible. Therefore, $n=1$ and $u_{\tau}^{p} \in M$. Since $a_{t} \in M_{1}$ and $a_{t}^{p} \in M, a_{t}=c u_{\sigma}$ with $c \in M$ and $\sigma \in J_{0}$. Thus for $m=1$ the lemma is true.

Assume that the lemma is true for $m=k$, that is, if $a^{p^{k}} \in M_{1}$, then $a=a_{t} u_{\sigma}$ where $a_{t} \in M_{1}$ and $\sigma \in \mathbf{Z} / p^{n} \mathbf{Z}$. Assume $a^{p^{k+1}} \in M_{1}$. Then $a^{p}=b u_{\sigma}$ with $b \in M_{1}$ and $\sigma \in \mathbf{Z} / p^{n} \mathbf{Z}$. If σ is a generator of $\mathbf{Z} / p^{n} \mathbf{Z}$, then $a^{p} \notin M_{1}^{\alpha}\left(p \mathbf{Z} / p^{n} \mathbf{Z}\right)$ but $a^{p^{2}}=b^{p} u_{\sigma}^{p} \in$ $M_{1}^{\alpha}\left(p \mathbf{Z} / p^{n} \mathbf{Z}\right)$. From Lemma 10 it is impossible. Therefore, σ is not a generator of $\mathbf{Z} / p^{n} \mathbf{Z}$. Thus from Lemma $11 a=c u_{\tau}$ such that $c \in M_{1}\left(u_{\sigma}\right)$ and $\tau^{p}=\sigma$. Note that $c^{p} \in M_{1}$. Thus there are $\delta \in<\sigma>$ and $c_{1} \in M_{1}$ such that $c=c_{1} u_{\delta}$. We know $c_{1}^{p^{k+1}} \in M$. Thus $a=d u_{\gamma} u_{\delta} u_{\tau}$. We prove the lemma.

Lemma 13. Let a finite abelian p-group G act on a number field M trivially. Let α be a 2-cocycle in $Z^{2}\left(G, M^{\times}\right)$. Assume that $M^{\alpha} G$ is commutative and for any subgroup H of G of order $p, M^{\alpha} H$ is a field. Then $M^{\alpha} G$ is a field.

Proof. We will prove this by induction. Let $J=J_{0} \oplus \mathbf{Z} / p^{n} \mathbf{Z}$ be a subgroup of G and τ be a generator for $\mathbf{Z} / p^{n} \mathbf{Z}$. Let $J_{1}=J_{0} \oplus p \mathbf{Z} / p^{n} \mathbf{Z}$. Assume that $M^{\alpha} J_{1}$ is a field and $M^{\alpha} J$ is not a field. Since $u_{\tau}^{p} \in M^{\alpha} J_{1}$, we know that $x^{p}-u_{\tau}^{p} \in M^{\alpha} J_{1}[x]$ is reducible. Then there is a solution $b \in M^{\alpha} J_{1}$ of $x^{p}-u_{\tau}^{p}=0$. Since $b^{p^{n}}=u_{\tau}^{p^{n}} \in M$, by Lemma 12, we get $b=c u_{\sigma}$ with $\sigma \in J_{1}$. Note that $\left(u_{\tau} u_{\sigma}^{-1}\right)^{p}=u_{\tau}^{p} u_{\sigma}^{-p}=b^{p} u_{\sigma}^{-p}=c^{p}$. Then $\tau^{p}=\sigma^{p}$ and $M^{\alpha}\left\langle\tau \sigma^{-1}\right\rangle$ is not a field, which contradicts the assumption.

References

[1] B. H. Gross, Arithmetic on Elliptic Curves with Complex Multiplications, Lecture Notes in Math. 776, Springer, 1980.
[2] E. Kani and M. Rosen, Idempotent relations and factors of Jacobians, Math. Ann. 284 (1989) 307-327.
[3] T. Nakamura, On abelian varieties associated with elliptic curves with complex multiplications, Acta Arith. 97 (2001), no. 4, 379-385.
[4] A. Weil, Adeles and algebraic groups, Progr. Math. 23 (1982).
[5] H. Yu, Idempotent relations and the conjecture of Birch and Swinnerton-Dyer, Math. Ann. 327 (2003) 67-78.

Hoseog Yu

Department of Mathematics and Statistics, Sejong University, Seoul 05006, Korea
E-mail: hsyu@sejong.edu

[^0]: Received February 18, 2022. Revised August 23, 2022. Accepted September 19, 2022.
 2010 Mathematics Subject Classification: 14K05, 14K02.
 Key words and phrases: restriction of scalars, descent, isogeny.
 (C) The Kangwon-Kyungki Mathematical Society, 2022.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

