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RESTRICTION OF SCALARS WITH SIMPLE ENDOMORPHISM

ALGEBRA

Hoseog Yu

Abstract. Suppose L/K be a finite abelian extension of number fields of odd
degree and suppose an abelian variety A defined over L is a K-variety. If the
endomorphism algebra of A/L is a field F , the followings are equivalent :
(1) The enodomorphiam algebra of the restriction of scalars from L to K is simple.
(2) There is no proper subfield of L containing LGF on which A has a K-variety
descent.

1. Introduction

Let K be a number field and L be a finite abelian extension of K of odd degree
with Galois group G = Gal(L/K). Let A be an abelian variety defined over L
whose endomorphism ring is denoted by EndL(A). Assume the endomorphism algebra
EndL(A) ⊗Z Q is a field. Denote EndL(A) ⊗Z Q by F . We suppose that A is a K-
variety, that is, for each σ ∈ G, σ(A) is L-isogenous to A. Write ResL/K(A) together
with a morphism φ : ResL/K(A)→ A for the restriction of scalars of A from L to K.
For the definitions and properties of the restriction of scalars, see [4, p.5] or [5, p.68].
We will prove the following main theorem.

Main Theorem. The followings are equivalent.

1. ResL/K(A) is K-isogenous to a product B × · · · ×B of a simple abelian variety
B defined over K.

2. There is no proper subfield of L containing LGF on which A has a K-variety
descent.

Proof of Main Theorem will be given after Lemma 6.
In [1, §15] and [3], there are some corollaries of this theorem when A is an elliptic

curve.

2. Simple algebra and descent

From the assumption that A is a K-variety, for each σ ∈ G, there is a L-isogeny
fσ : σ(A)→ A.
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For b ∈ EndL(A), we define b̃ ∈ EndK(ResL/K(A)) satisfying φ◦ b̃ = b◦φ. From the
universal mapping property of restriction of scalars, the existence and the uniqueness

of b̃ for b ∈ EndL(A) is obvious (see [4, p.5]). For details, see [5, Definition 4 in p.72].
For each σ ∈ G, define uσ ∈ EndK(ResL/K(A)) such that φ ◦ uσ = fσ ◦ σ(φ). There
is a similar definition in [5, Definition 1 in p.68]. Then the morphism uσ exists and is
unique when the isogeny fσ : σ(A)→ A is given.

Define F̃ =
{
b̃ ∈ EndK(ResL/K(A)) | b ∈ EndL(A)

}
⊗ZQ. Now we define the action

of G on F̃ . Because fσ is an isogeny, there is a dual isogeny morphism f∨σ : A→ σ(A)
such that fσ◦f∨σ is multiplication by deg(fσ). Now for b ∈ F there are a positive integer

m and b0 ∈ EndL(A) such that b = b0⊗ 1
m

. We define σ b̃ = (fσ◦σ(b0)◦f∨σ )∼⊗ 1
m·deg(fσ) .

It is clear that this action of G on F̃ is independent of the choice of fσ. We can check

that uσ ◦ b̃ = σ b̃ ◦ uσ for b ∈ F .

We define α(σ, τ) = uσ ◦ uτ ◦ u−1στ ∈ F̃× for σ, τ ∈ G. Then α is a 2-cocycle from G

to F̃×. Define

F̃αG =

{∑
σ∈G

ãσ ◦ uσ ∈ EndK(ResL/K(A))⊗Z Q

∣∣∣∣ aσ ∈ F
}
.

From ã ◦ uσ ◦ b̃ ◦ uτ = ã ◦ σ b̃ ◦ uσ ◦ uτ = ã ◦ σ b̃ ◦ α(σ, τ) ◦ uστ for a, b ∈ F and for

σ, τ ∈ G, we can show that F̃αG is a twisted group ring.

Theorem 1. We get EndK(ResL/K(A))⊗Z Q = F̃αG.

Proof. Let ιτ : τ(A) →
∏

σ∈G σ(A) denote the inclusion map into the τ -th com-
ponent. Define the isomorphism Φ:

∏
σ σ(A) → ResL/K(A) to be the the inverse

morphism of
∏

σ σ(φ) : ResL/K(A) →
∏

σ σ(A). For β ∈ EndK(ResL/K(A)) ⊗Z Q,
define bσ ∈ F by bσ = φ ◦ β ◦ Φ ◦ ισ ◦ f−1σ . Note that

φ ◦
∑
σ

b̃σ ◦ uσ =
∑
σ

bσ ◦ fσ ◦ σ(φ) =
∑
σ

(φ ◦ β ◦ Φ ◦ ισ ◦ f−1σ ) ◦ fσ ◦ σ(φ) = φ ◦ β.

Thus β =
∑

σ b̃σ ◦ uσ and EndK(ResL/K(A)) ⊗Z Q ⊆ F̃αG. Then the theorem
follows.

Define the isotropy subgroup of G by GF = {σ ∈ G | σ b̃ = b̃ for b ∈ F }. Define Gr

by {σ ∈ GF | There is aσ ∈ EndL(A)× such that uτ ◦ (ãσ ◦ uσ) = (ãσ ◦ uσ) ◦ uτ for
τ ∈ G }. Then we replace fσ with aσ ◦ fσ for σ ∈ Gr to define new uσ’s. With these
newly defined uσ’s,

Gr = {σ ∈ GF |uτ ◦ uσ = uσ ◦ uτ for τ ∈ G }.

Note that the endomorphism algebra F̃αG = EndK(ResL/K(A)) ⊗Z Q is semisimple

(see [2]) and the center of F̃αG is (F̃G)αGr. Thus F̃αG is simple if and only if (F̃G)αGr

is a field.

Theorem 2. The center (F̃G)αGr of F̃αG is a field if and only if (F̃G)αH is a field
for any prime order subgroup H of Gr.

Proof. It is clear from the following lemma.
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Lemma 3. Let a finite abelian group G act on a number field M trivially. Define
H = {H ≤ G |H is a group of prime order.}. Let α be a 2-cocycle from G to M×.
Assume that the twisted group ring MαG is commutative and MαH is a field for
H ∈ H. Then MαG is a field.

Proof. With Sylow p-subgroups Gp of G, we get G = ⊕pGp. From section 3, MαGp

is a field. Because MαG ∼= ⊗pMαGp, M
αG is a field.

Definition 4. An abelian variety A defined over L has a K-variety descent if
there are a proper subfield L0 of L containing LGF and an abelian variety A0 defined
over L0 such that A0 is L-isogenous to A and A0 is a K-variety, that is, σ(A0) is
L0-isogenous to A0 for σ ∈ G.

Theorem 5. Let a subgroup H of Gr be of prime order p. Then (F̃G)αH is a field
if and only if A doesn’t have a K-variety descent to LH .

Proof. Assume A has a K-variety descent to LH . Then (F̃G)αH ∼= FG[x]/ 〈xp − 1〉.
Therefore, (F̃G)αH is not a field.

Suppose that (F̃G)αH is not a field. Let σ ∈ H be a generator. Define fσi =

fσi−1 ◦ σi−1(fσ) for 2 ≤ i ≤ p. Then uσi = uiσ for 1 ≤ i ≤ p and upσ ∈ F̃G. If xp− upσ is

irreducible in F̃G[x], (F̃G)αH is a field. Thus xp − upσ is reducible in F̃G[x] and there

is aσ ∈ F such that ãσ ∈ F̃G and upσ = ãσ
p. Define gσ = a−1σ ◦ fσ : σ(A)→ A.

Let ResL/LH (A) be the restriction of scalars of A from L to LH with a morphism
ψ : ResL/LH (A) → A. Define wσ ∈ EndLH (ResL/LH (A)) ⊗Z Q such that ψ ◦ wσ =
gσ ◦ σ(ψ).

Define B =
(∑p−1

i=0 w
i
σ

)
ResL/LH (A). Then ψ is a morphism from B to A. By

restricting the domain of ψ to B, we get gσ◦σ(ψ) = ψ because gσ◦σ(ψ)◦
(∑p−1

i=0 w
i
σ

)
=

ψ ◦ wσ ◦
(∑p−1

i=0 w
i
σ

)
= ψ ◦

(∑p−1
i=0 w

i
σ

)
.

Define ψ̃ : ResL/K(B) → ResL/K(A) by φ ◦ ψ̃ = ψ ◦ φB with the morphism
φB : ResL/K(B) → B. We know that uτ ◦ uσ = uσ ◦ uτ for τ ∈ G and σ ∈ Gr.

Thus uτ ◦ (ãσ
−1 ◦ uσ) = (ãσ

−1 ◦ uσ) ◦ uτ for τ ∈ G and σ ∈ Gr.

Then ψ̃−1 ◦ uτ ◦ uσ ◦ ψ̃ = ψ̃−1 ◦ uσ ◦ uτ ◦ ψ̃. Note φB ◦ ψ̃−1 ◦ uτ ◦ uσ ◦ ψ̃ =

ψ−1 ◦ fτ ◦ x(ψ) ◦ (τσ)(φB) and φB ◦ ψ̃−1 ◦ uσ ◦ uτ ◦ ψ̃ = σ(ψ−1 ◦ fτ ◦ τ(ψ)) ◦ (στ)(φB).
Then σ(ψ−1 ◦ fτ ◦ τ(ψ)) = ψ−1 ◦ fτ ◦ τ(ψ) : τ(B) → B. That is ψ−1 ◦ fτ ◦ τ(ψ) is
defined over LH .

Lemma 6. Suppose that A has a K-variety descent on LH for a subgroup H of
GF . Then H ≤ Gr.

Proof. We may assume that the abelian varity A is defined over LH and for σ ∈ G,
σ(A) is LH-isogenous to A. We can assume fθ = idA for θ ∈ H. Pick θ ∈ H and
τ ∈ G. Note that θ(fτ ) = fτ . Now φ◦uτ ◦uθ = fτ ◦(τθ)(φ) and φ◦uθ◦uτ = fτ ◦(θτ)(φ).
Since G is abelian, uτ ◦ uθ = uθ ◦ uτ . Thus θ ∈ Gr and H ≤ Gr.

Proof of Main Theorem. The following equivalences prove Main Theorem.
ResL/K(A) is K-isogenous to a product B × · · · × B of a simple abelian variety B
defined over K.
m

F̃αG is simple.
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m by the statement after Theorem 1

(F̃G)αGr is a field.
m by Theorem 2

(F̃G)αH is a field for any prime order subgroup H of Gr.
m by Theorem 5

A doesn’t have a K-variety descent to LH for any prime order subgroup H of Gr.
m by Lemma 6

There is no proper subfield of L containing LGF on which A has a K-variety descent.

Corollary 7. Let K be finite Galois extension over Q which is a primitive totally
complex. Let L be an abelian extension of K and let A be an abelian variety defined
over L. We assume that L is the field of moduli and that A is a K-variety, that is, for
each σ ∈ Gal(L/K), σ(A) and A are L-isogenous. Assume that there is no K-variety
descent of A on M such that K ≤M � L. Then ResL/K(A) has only one simple factor
up to isogeny over K, that is, the endomorphism algebra EndK(ResL/K(A))⊗Z Q is
simple.

Theorem 8. [3] Let E be an elliptic curve such that F = End0(E) is a quadratic
imaginary number field. Let j be the j-invariant of E. Assume that E is defined over
the Hilbert class field F (j) of F and F = End0

F (j)(E). Assume that E is an F -curve.
Then ResF (j)/F (E) has only one simple factor.

Proof. It is well-known that there is no descent of E to a proper subfield of F (j).
From the above corollary, the theorem follows.

Assume that G acts trivially on F . Define β(σ, τ) = α(σ, τ)/α(τ, σ). We can
show that β is a bilinear antisymmetric pairing from G × G to µF , where µF is the
set of roots of unity in F . Then it is easy to show that β(Gr, G) = β(G,Gr) = 1.
Moreover, the induced pairing from G/Gr × G/Gr to µF is non-degenerate bilinear
antisymmetric. In the theorem of Nakamura, we know that if the class number of F
is not 1, then µF = {±1}. Therefore, G/Gr

∼= (Z/2Z)m ⊕ (Z/2Z)m. Then FαG ∼=
(FαGr)

α(G/Gr). Denote by Di central simple quaternion algebra with center FαGr.
Then FαG ∼= D1 ⊗ · · · ⊗Dm. Now FαG ∼= M2m(FαGr) or FαG ∼= M2m−1(D), where
D is a central simple quaternion algebra with center FαGr.

Theorem 9. [1, §15] Let E be an elliptic curve such that F = End0(E) is a
quadratic imaginary number field. Let j be the j-invariant of E. Assume that E is
defined over Q(j) and F = End0

F (j)(E). Assume that E is a Q-curve and [Q(j) : Q]
is odd. Then ResQ(j)/Q(E) is simple.

Proof. In a similar way, we can show that ResQ(j)/Q(E) has only one simple factor.
Since [G : Gr] is odd, G = Gr. Therefore, FαG is a field. Then ResQ(j)/Q(E) is
simple.

3. Lemmas

Assume that G is a finite abelian p-group with an odd prime p. The group G acts
on a number field M trivially. With a 2-cocycle α from G to M×, we assume that the
twisted group ring MαG = {

∑
σ aσuσ | aσ ∈M and σ ∈ G } is commutative. Assume

that for any cyclic subgroup H of G of order p, MαH is a field.
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Lemma 10. Let γ ∈ C be a root of a polynomial xp
2 − a ∈ M [x] such that

[M(γ) : M ] = p. Then M(γp) = M .

Proof. We assume that M(γp) = M(γ). Then [M(γp, ζp) : M(ζp)] = p with a
primitive p-th root of unity ζp. Now we choose a generator δ in Gal(M(γp, ζp)/M(ζp))
such that δ(γp) = γpζp. Thus η = δ(γ)γ−1 ∈ M(γp, ζp) is a primitive p2-th root
of unity. Then δ(η) = ηk with k ≡ 1 (mod p). Now γ = δp(γ) = γηp, which is
impossible. Therefore, M ⊆M(γp) (M(γ).

Lemma 11. Assume that α ∈ C is a solution of an irreducible polynomial xp −
d ∈ M [x]. If ep ∈ M for e ∈ M(α), then e = bαt with b ∈ M and an integer
t (0 ≤ t ≤ p− 1).

Proof. Note that [M(α) : M ] = p. With a p-th root of unity ζp, we know

[M(α, ζp) : M(ζp)] = p. Write e =
∑p−1

i=0 eiα
i with ei ∈ M . Let δ be a generator

of Gal(M(α, ζp)/M(ζp)) such that δ(α) = ζpα. Because ep ∈ M , δ(e) = eζtp for an

integer t (0 ≤ t ≤ p−1). Thus from
∑p−1

i=0 ei(αζp)
i =

∑p−1
i=0 eiα

iζtp, we get e = etα
t.

Lemma 12. Assume that for a subgroup J of G, MαJ is a field. For a positive
integer m and a ∈MαJ , if ap

m ∈M , then a = cuσ with c ∈M and σ ∈ J .

Proof. Let J = J0 ⊕ Z/pnZ. Assume that the lemma is true for MαJ0. Let
M1 = MαJ0.

Assume that m = 1 and that the lemma is true for Mα
1 J1 where J1 = pZ/pnZ.

With a generator τ of Z/pnZ, Mα
1 (Z/pnZ) = Mα

1 J1(uτ ) and [Mα
1 J1(uτ ) : Mα

1 J1] = p.
From the previous lemma, we get a = atu

t
τ with at ∈Mα

1 J1 and a nonnegative integer
t.

Assume n ≥ 2. Let J2 = p2Z/pnZ. Assuming t 6= 0, then apt 6∈ Mα
1 J2 but

ap
2

t ∈MαJ2. Then we get Mα
1 J1 = Mα

1 J2(at) = Mα
1 J2(a

p
t ) and [Mα

1 J2(at) : Mα
1 J2] = p.

From Lemma 10, it is not possible. Therefore, n = 1 and upτ ∈M . Since at ∈M1 and
apt ∈M , at = cuσ with c ∈M and σ ∈ J0. Thus for m = 1 the lemma is true.

Assume that the lemma is true for m = k, that is, if ap
k ∈ M1, then a = atuσ

where at ∈M1 and σ ∈ Z/pnZ. Assume ap
k+1 ∈M1. Then ap = buσ with b ∈M1 and

σ ∈ Z/pnZ. If σ is a generator of Z/pnZ, then ap 6∈ Mα
1 (pZ/pnZ) but ap

2
= bpupσ ∈

Mα
1 (pZ/pnZ). From Lemma 10 it is impossible. Therefore, σ is not a generator of

Z/pnZ. Thus from Lemma 11 a = cuτ such that c ∈ M1(uσ) and τ p = σ. Note that
cp ∈ M1. Thus there are δ ∈< σ > and c1 ∈ M1 such that c = c1uδ. We know

cp
k+1

1 ∈M . Thus a = duγuδuτ . We prove the lemma.

Lemma 13. Let a finite abelian p-group G act on a number field M trivially. Let α
be a 2-cocycle in Z2(G,M×). Assume that MαG is commutative and for any subgroup
H of G of order p, MαH is a field. Then MαG is a field.

Proof. We will prove this by induction. Let J = J0 ⊕ Z/pnZ be a subgroup of G
and τ be a generator for Z/pnZ. Let J1 = J0 ⊕ pZ/pnZ. Assume that MαJ1 is a
field and MαJ is not a field. Since upτ ∈ MαJ1, we know that xp − upτ ∈ MαJ1[x] is
reducible. Then there is a solution b ∈MαJ1 of xp−upτ = 0. Since bp

n
= up

n

τ ∈M , by
Lemma 12, we get b = cuσ with σ ∈ J1. Note that (uτu

−1
σ )p = upτu

−p
σ = bpu−pσ = cp.

Then τ p = σp and Mα 〈τσ−1〉 is not a field, which contradicts the assumption.
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