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INEQUALITIES FOR B-OPERATOR

Rubia Akhter∗ and M. H. Gulzar

Abstract. Let Pn denote the space of all complex polynomials P (z) =
n∑
j=0

ajz
j of

degree n. Let P ∈ Pn, for any complex number α, DαP (z) = nP (z) + (α− z)P ′(z),
denote the polar derivative of the polynomial P (z) with respect to α and Bn denote
a family of operators that maps Pn into itself. In this paper, we combine the
operatorsB andDα and establish certain operator preserving inequalities concerning
polynomials, from which a variety of interesting results can be obtained as special
cases.

1. Introduction

Let Pn denotes the space of all complex polynomials p(z) =
n∑
j=0

ajz
j of degree

at most n. We write T = {z ∈ C : |z| = 1}, D− = {z ∈ C : |z| < 1} and
D+ = {z ∈ C : |z| > 1}. If p ∈ Pn, then

max
z∈T
|p′(z)| ≤ nmax

z∈T
|p(z)|.(1)

Equality holds in (1) for the polynomial p(z) = ζzn where ζ ∈ C. Inequality (1) is an
immediate consequence of S. Bernstein’s Theorem (see [4], [14], [16]) on the derivative
of a trigonometric polynomial. For the class of polynomials P ∈ Pn which do not
vanish in D−, we have

max
z∈T
|p′(z)| ≤ n

2
max
z∈T
|p(z)|.(2)

Equality in (2) holds for p(z) = ηzn+ζ; |η| = |ζ| = 1. Inequality (2) was conjectured
by P. Erdös and later verified by P. D. Lax [11]. Aziz and Dawood [2] used min

|z|=1
|p(z)|

to obtain refinement of inequality (2) by proving that if p ∈ Pn and p(z) 6= 0 for
z ∈ D−, then

max
z∈T
|p′(z)| ≤ n

2

{
max
z∈T
|p(z)| −min

z∈T
|p(z)|

}
.(3)

Equality holds in (3) for the polynomial p(z) = ηzn + ζ; |η| = |ζ| = 1.
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Aziz was among the first to extend these results by replacing the derivative with
the polar derivative of the polynomial. For a complex number α and for p ∈ Pn, let

Dαp(z) = np(z) + (α− z)p′(z).

Dαp(z) is a polynomial of degree at most n− 1. This is the so-called polar derivative
of p(z) with respect to point α [14]. It generalizes the ordinary derivative in the sense
that:

lim
α→∞

Dαp(z)

α
= p′(z).

Now corresponding to a given nth degree polynomial p(z), we construct a sequence of
polar derivatives

Dαp(z) = np(z) + (α− z)p′(z)

Dαk
Dαk−1

...Dα1p(z) =(n− k + 1)Dαk−1
...Dα1p(z)

+ (αk − z)(Dαk−1
...Dα1p(z))′ for k = 2, 3, ..., n.

The points α1, α2, ..., αk, k = 1, 2, ..., n, may be equal or unequal. Like the kth ordinary
derivative p(k)(z) of p(z), the kth polar derivative Dαk

Dαk−1
...Dα1p(z) of p(z) is a

polynomial of degree n− k. For pj(z) = Dαj
Dαj−1

...Dα1p(z), we have

pj(z) = (n− j + 1)pj−1 + (αj − z)p′j−1(z), j = 1, 2, ..., k,

p0(z) = p(z).
(4)

As an extension of (1) for the polar derivative Aziz and Shah [3] proved that

|Dαp(z)| ≤ |αzn−1|max
z∈T
|p(z)| for z ∈ T ∪D+.(5)

Aziz [1] extended (5) to the jth polar derivative and proved the following theorem

Theorem 1.1. If p(z) is a polynomial of degree n such that α1, α2, ..., αt, (t < n),
are complex numbers with |αi| ≥ 1 for all i = 1, 2, ..., t then for |z| ≥ 1,

|pt(z)| ≤ n(n− 1)...(n− t+ 1)|α1α2...αt||z|n−t max
|z|=1
|p(z)|.

In the literature [8], [9], there exists many generalisations and refinements of (5).
Let T be a linear operator from Pn into Pn. We shall say that T is a Bn-operator

if, for every polynomial f of degree n having all its zeros in the closed unit disc, T[f ]
has all its zeros in the closed unit disc.

It is interesting to mention that Professor Q. I. Rahman has pointed out to char-
acterize all such operators. As an attempt to this characterization, it was proved [16]
that the operator B which carries a polynomial p(z) into the polynomial

B[p](z) := λ0p(z) + λ1

(nz
2

) p′(z)

1!
+ λ2

(nz
2

)2 p′′(z)

2!
,

is a Bn-operator if all the zeros of

u(z) := λ0 + nλ1z +
n(n− 1)

2
λ2z

2,(6)

lie in the half plane

|z| ≤
∣∣∣z − n

2

∣∣∣ .(7)
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where λ0, λ1 and λ2 are real or complex numbers. As an extension of Bernstein’s
inequality, it was observed by Rahman [15], that if |p(z)| ≤M for z ∈ T , then

|B[p(z)]| ≤M |B[zn]|, z ∈ T ∪D+.

Bidkham and Mezerji [6] have generalized some of the above inequalities by combining
B and Dα operators and proved that if p ∈ Pn does not vanish in D−, then for every
real or complex number α with |α| ≥ 1 and for z ∈ T ∪D+:

|B[Dαp(z)]| ≤ n

2
[{|α||B[zn−1]|+ |λ0|}M − {|α||B[zn−1]| − |λ0|}m].(8)

2. Main Results

In this paper, we combine the two operators B and Dα and obtain an improvement
and generalisations of the above inequalities.

Theorem 2.1. If p(z) is a polynomial of degree at most n having all zeros in |z| ≤ 1,
then for every α1, α2, ..., αt with |αi| ≥ 1, i = 1, 2..., t(t < n) and z ∈ T ∪D+

|B[pt(z)]| ≥ nt|α1||α2|...|αt||B[zn−t]|min
z∈T
|p(z)|(9)

where nt = n(n− 1)...(n− t+ 1).

Substituting the value of B[pt(z)] and B[zn−t] in (9) we have for z ∈ T ∪D+∣∣∣∣λ0pt(z) + λ1
nz

2
(pt(z))′ +

λ2

2!

(nz
2

)2

(pt(z))′′
∣∣∣∣

≥ nt|α1||α2|...|αt|
∣∣∣∣λ0z

n−t + λ1
nz

2
(n− t)zn−t−1 +

λ2

2!

(nz
2

)2

(z − t)(z − t− 1)zn−t−2

∣∣∣∣
×min

z∈T
|p(z)|

where λ0, λ1, λ2 are such that all the zeros of u(z) defined by (6) lie in the half plane
|z| ≤

∣∣z − n
2

∣∣. If we choose λ1 = 0 = λ2 in (9), we get the following result:

Corollary 2.2. If p(z) is a polynomial of degree at most n having all zeros in
|z| ≤ 1, then for every α1, α2, ..., αt with |αi| ≥ 1, i = 1, 2..., t(t < n) and z ∈ T ∪D+

|pt(z)| ≥ nt|α1||α2|...|αt||zn−t|min
z∈T
|p(z)|

where nt = n(n− 1)...(n− t+ 1).

Let α1 = α2 = ... = αt = α. Dividing both sides of (9) by |α|t and letting |α| → ∞
we get the following result:

Corollary 2.3. If p(z) is a polynomial of degree at most n having all zeros in
|z| ≤ 1, then for z ∈ T ∪D+

|B[p(t)(z)]| ≥ nt|B[zn−t]|min
z∈T
|p(z)|

where nt = n(n− 1)...(n− t+ 1).
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Theorem 2.4. If p(z) is a polynomial of degree at most n having no zeros in |z| < 1,
then for every α1, α2, ..., αt with |αi| ≥ 1, i = 1, 2, ..., t(t < n) and z ∈ T ∪D+

|B[pt(z)]| ≤nt
2

{
t∏
i=1

|αi||B[zn−t]|+ |λ0|

}
max
z∈T
|p(z)|

− nt
2

{
t∏
i=1

|αi||B[zn−t]| − |λ0|

}
min
z∈T
|p(z)|

(10)

where nt = n(n− 1)...(n− t+ 1).

Remark 2.5. For t = 1 we get inequality (8).

Let α1 = α2 = ... = αt = α. Dividing both sides of (9) by |α|t and letting |α| → ∞
we get the following result:

Corollary 2.6. If p(z) is a polynomial of degree at most n having no zeros in
|z| < 1 and z ∈ T ∪D+

|B[p(t)(z)]| ≤ nt
2

{
|B[zn−t]|max

z∈T
|p(z)| − |B[zn−t]|min

z∈T
|p(z)|

}
(11)

where nt = n(n− 1)...(n− t+ 1).

Substituting the value of B[pt(z)] and B[zn−t] in (10) we have for z ∈ T ∪D+∣∣∣∣λ0pt(z) + λ1
nz

2
(pt(z))

′ +
λ2

2!

(nz
2

)2
(pt(z))

′′
∣∣∣∣

≤ nt
2

{
t∏
i=1

|αi|
∣∣∣∣λ0z

n−t + λ1
nz

2
(n− t)zn−t−1 +

λ2

2!

(nz
2

)2
(z − t)(z − t− 1)zn−t−2

∣∣∣∣+ |λ0|

}
×max

z∈T
|p(z)|

− nt
2

{
t∏
i=1

|αi|
∣∣∣∣λ0z

n−t + λ1
nz

2
(n− t)zn−t−1 +

λ2

2!

(nz
2

)2
(z − t)(z − t− 1)zn−t−2

∣∣∣∣− |λ0|

}
×min

z∈T
|p(z)|

where λ0, λ1, λ2 are such that all the zeros of u(z) defined by (6) lie in the half plane
|z| ≤

∣∣z − n
2

∣∣. If we choose λ1 = 0 = λ2 in (10), we get the following result in terms

of tth polar derivative:

Corollary 2.7. If p(z) is a polynomial of degree at most n having no zeros in
|z| < 1, then for every α1, α2, ..., αt with |αi| ≥ 1, i = 1, 2, ..., t(t < n) and z ∈ T∪D+

|[pt(z)]| ≤ nt
2

{(
t∏
i=1

|αi||[zn−t]|+ 1

)
max
z∈T
|p(z)| −

(
t∏
i=1

|αi||[zn−t]| − 1

)
min
z∈T
|p(z)|

}
where nt = n(n− 1)...(n− t+ 1).

Substituting the value of B[pt(z)] and B[zn−t] in (11) and choosing |λ1| = |λ2| = 0
we get the result in terms of tth derivative as follows:
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Corollary 2.8. If p(z) is a polynomial of degree at most n having no zeros in
|z| < 1, then for z ∈ T ∪D+

|[p(t)(z)]| ≤ nt
2

{
|[zn−t]|max

z∈T
|p(z)| − |[zn−t]|min

z∈T
|p(z)|

}
(12)

where nt = n(n− 1)...(n− t+ 1).

3. Lemmas

For the proof of these theorems, we need the following Lemmas. The first Lemma
is due to Laguerre [10].

Lemma 3.1. If all the zeros of an nth degree polynomial p(z) lie in a circular region
C and if none of the points α1, α2, ..., αt, (t < n) lie in the region C then each of the
polar derivatives p1(z), p2(z), ..., pt(z),(defined by (4)) has all its zeros in region C.

The following Lemma which we need is in fact implicit in [16] (Rahman and
Schmeisser, 2002, Lemma 14.5.7, p. 540)

Lemma 3.2. If all the zeros of polynomial p(z) of degree n lie in |z| ≤ 1, then all
the zeros of the polynomial B[p(z)] also lie in |z| ≤ 1.

Lemma 3.3. If all the zeros of the polynomial p(z) lie in |z| ≤ 1, then for every
α1, α2, ..., αt with |αi| ≥ 1, i = 1, 2, ..., t(t < n), the polynomial B[pt(z)] also has
zeros in |z| ≤ 1.

Proof. Since all the zeros of p(z) lie in |z| ≤ 1, then by Lemma 3.1, for every
α1, α2, ..., αt with |αi| ≥ 1, i = 1, 2, ..., t(t < n), the polynomial pt(z) has all its
zeros in |z| ≤ 1. Hence by Lemma 3.2, the polynomial B[pt(z)] has all its zeros in
|z| ≤ 1.

Lemma 3.4. If the polynomial p(z) of degree at most n has no zeros in |z| < 1,
then for every α1, α2, ..., αt with |αi| ≥ 1, i = 1, 2, ..., t(t < n),

|B[pt(z)]| ≤ |B[qt(z)]| for |z| ≥ 1

where q(z) = znp
(

1
z̄

)
.

Proof. Since p(z) does not vanish in D−, so q(z) has all zeros in D−. Also |p(z)| =
|q(z)| for z ∈ T . By Rouche’s Theorem the polynomial p(z) − γq(z) has all zeros
in D− for every γ with |γ| > 1. By Lemma 3.3, the polynomial B[pt(z) − γqt(z)] =
B[pt(z)]− γB[qt(z)] has all zeros in D−. This gives

|B[pt(z)]| ≤ |B[qt(z)]| for |z| ≥ 1.

Lemma 3.5. If p(z) is a polynomial of degree at most n, then for every α1, α2, ..., αt
with |αi| ≥ 1, i = 1, 2, ..., t(t < n),

|B[pt(z)]|+ |B[qt(z)]| ≤ nt

{
t∏
i=1

|αi||B[zn−t]|+ |λ0|

}
max
|z|=1
|p(z)|

where nt is defined in Theorem 2.1.
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Proof. Let M = max
|z|=1
|p(z)|. By Rouche’s Theorem the polynomial g(z) = p(z) −

βM does not vanish in |z| ≤ 1. Applying Lemma 3.4 to the polynomial g(z) we have
for z ∈ T ∪D+

|B[gt(z)]| ≤ |B[ht(z)]|

where h(z) = zng
(

1
z̄

)
= q(z)− β̄Mzn. Substitute for gt(z) and ht(z) we get

|B[pt(z)− ntβM ]| ≤ |B[qt(z)− ntβ̄Mα1α2...αtz
n−t]|

Equivalently,

|B[pt(z)]− ntβMλ0| ≤ |B[qt(z)]− ntβ̄Mα1α2...αtB[zn−t]|(13)

Since h(z) = q(z) − β̄Mzn has all zeros in |z| < 1, so by Lemma 3.3 the polynomial
B[ht(z)] = B[qt(z)] − ntβ̄Mα1α2...αtB[zn−t] has all zeros in |z| < 1 which gives for
|z| ≥ 1

|B[qt(z)]| < ntM |α1||α2|...|αt||B[zn−t]|.(14)

Choosing argument of β in right hand side of (13) which is possible by (14), we get
for z ∈ T ∪D+

|B[pt(z)]| − nt|β|M |λ0| ≤ nt|β|M |α1||α2|...|αt||B[zn−t]| −B[qt(z)](15)

Letting β → 1 in (15) we get

|B[pt(z)]|+B[qt(z)] ≤ nt

{
t∏
i=1

|αi||B[zn−t]|+ |λ0|

}
max
|z|=1
|p(z)|.

4. Proofs of the Theorems

Proof of Theorem 2.1: If p(z) has no zero on |z| = 1, then there is nothing to
prove. Suppose that all the zeros of p(z) lie in D−, then min

z∈T
|p(z)| = m > 0, so we

have m ≤ |p(z)| for z ∈ T . It follows by Rouche’s Theorem that all the zeros of
f(z) = p(z)−mζzn lie in D− with |ζ| < 1. Therefore by Lemma 3.3 all the zeros of
B[ft(z)] = B[pt(z)]−mntζα1α2...αtz

n−t also lie in D− which gives for z ∈ T ∪D+

|B[pt(z)]| ≥ mnt|α1||α2|...|αt||B[zn−t]|.(16)

If this is not true then there exist z0 with |z0| ≥ 1 such that

|B[pt(z0)]| < mnt|α1||α2|...|αt||B[zn−t0 ]|.(17)

Take ζ = |B[pt(z0)]|
mnt|α1||α2|...|αt||B[zn−t

0 ]| so that |β| < 1 by (17). With this choice of ζ,

B[ft(z0)] = 0 which is a contradiction as all zeros of B[ft(z)] lie in D−.

Proof of Theorem 2.4: If p(z) has a zero on T , then m = min
z∈T
|p(z)| = 0 and

result follows by combining Lemma 3.4 and Lemma 3.5. We suppose that all the
zeros of p(z) lie in D+ so that m > 0. By direct application of Rouche’s Theorem,
for any complex number δ with |δ| < 1, the polynomial R(z) = p(z) − δm does not

vanish in D−. Let S(z) = znR
(

1
z̄

)
= q(z) − δ̄mzn, then all the zeros of S(z) lie

in D− and |R(z)| = |S(z)| for z ∈ T . Again by Rouche’s Theorem all the zeros
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of R(z) − ρS(z) lie in D− for every ρ with |ρ| > 1. By Lemma 3.3 the polynomial
B[Rt(z)−ρSt(z)] = B[Rt(z)]−ρB[St(z)] has all zeros inD−, which gives for z ∈ T∪D+

|B[Rt(z)]| ≤ B[St(z)]

Equivalently we get |z| ≥ 1,

|B[pt(z)]− ntδmλ0| ≤ |B[qt(z)]− ntδ̄mα1α2...αtB[zn−t]|(18)

Or

|B[pt(z)]| − nt|δ|m|λ0| ≤ |B[qt(z)]− ntδ̄mα1α2...αtB[zn−t]|(19)

Since p(z) does not vanish in D−, so q(z) has all the zeros in D− and min
z∈T
|p(z)| =

min
z∈T
|q(z)| = m. Therefore choosing argument of δ in right hand side of (19) which is

possible by (9), we get

|B[pt(z)]| − nt|δ|m|λ0| ≤ |B[qt(z)]| − nt|δ|m|α1||α2|...|αt||B[zn−t]|(20)

Letting δ → 1 in (20), we get

|B[pt(z)]| − |B[qt(z)]| ≤ −nt

{
t∏
i=1

|αi||B[zn−t]| − |λ0|

}
min
z∈T
|p(z)|.(21)

Combining (21) with Lemma 3.5 we get the desired result.
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