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ON STEPANOV WEIGHTED PSEUDO ALMOST AUTOMORPHIC

SOLUTIONS OF NEURAL NETWORKS

Hyun Mork Lee

Abstract. In this paper we investigate some sufficient conditions to guarantee the
existence and uniqueness of Stepanov-like weighted pseudo almost periodic solutions
of cellular neural networks on Clifford algebra for non-automomous cellular neural
networks with multi-proportional delays. Our analysis is based on the differential
inequality techniques and the Banach contraction mapping principle.

1. Introduction

In the past decades, the dynamics of various neural networks have been extensively
studied. Many kinds of neural networks such as Hopfield neural networks and cellular
neural networks etc., have received much more attention from many fields ( [2], [12],
[15]). They are a good tool for the approximation of dynamical systems, and so their
successful application requires an understanding of their long term behavior with
dynamical properties, in specially, their existence, uniqueness and stability.

The mathematical theory that enables machine learning of artificial intelligence
is Kolmog- orov Arnold theorem [9], which is the starting point of neural network
models. A sufficiently large function space can be constructed by choosing a suitable
activation function and repeating only this function and arithmetic operation.

It is known that, as a generalization of real-valued neural networks, the research
of complex-valued and quaternion-valued neural networks have been investigated in
several kinds of neural networks have attracted more and more attention due to have
more advantages than real-valued neural networks in many aspects [5]. However they
are sometimes inapplicable for some for some engineering problems for instance such
as neural computing, computer and robot vision, image and signal processing. For
this reason, researchers attempted recently a more general and complicated neural
networks, which is Clifford-valued neural networks [2], [12], [13]. Clifford-valued neu-
ral networks are a kind of neural networks whose state variables, connection weights
and external inputs are Clifford numbers. They are generalizations of real-valued,
complex-valued and quaternion-valued neural networks. However, because the mul-
tiplication of quaternion numbers does not satisfy the commutative law. In order
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to avoid the non-commutativity of the quaternion multiplication, researchers decom-
posed given system into real-valued systems [15].
Recently, there have been investigate interesting results on the problem of the exis-
tence and stability various type of almost periodic solution for the following:

x′i(t) = −ci(t)xi(t) +
n∑
j=1

aij(t)fj(xj(t)) · · · · · · (1)

+
n∑
j=1

bij(t)gj(xj(qijt)) + Ii(t), t ≥ 0.

Some authors argue that the first term in each of the right side of (1) corresponds
to stabilizing negative feedback of the system which acts instantaneously without
time delay; these terms are variously known as ”forgetting” or a leakage terms (
[8], [13]). The model which has time-varing leakage delays is more general than the
previous ones(model). Therefore, some authors focused on the existence and stability
of equibrium and periodic solutions for neural networks model involving leakage delay.
And it is known from the stabilizing negative feedback terms will have a tendency to
destabilize a system.

Motivated by the aforementioned works, to illustrate our abstract result, we investi-
gate some sufficient conditions to guarantee the existence and uniqueness of Stepanov-
like weighted pseudo almost periodic solutions of cellular neural networks on Clifford
algebra for non-automomous cellular neural networks with multi-proportional and
time-varying leakage delays as follow:

x′i(t) = −ci(t)xi(t− ηi(i)) +
n∑
j=1

aij(t)fj(xj(t)) · · · · · · (2)

+
n∑
j=1

bij(t)gj(xj(qijt)) + Ii(t), t ≥ 0.

The initial conditions associated with system (1) are of the form

xi(s) = ϕi(s), s ∈ [−τi, 0], ϕi ∈ C([−τi, 0],A) , i ∈ I = {1, 2, · · ·n},

n is the number of units in a neural network, xi(t) ∈ A, which is known as Clifford
number, corresponds to the state vector of the i-th unit at time t, ci(t) > 0 represents
the rate with which the i-th unit will reset its potential to the resting state in isolation
when disconnected from the network and external inputs, qij, i, j ∈ I are proportional
delay factors and satisfy 0 < qij ≤ 1, and qijt = t−(1−qij)t, in which ρij(t) = (1−qij)t
is the transmission delay function and (1−qij)t→∞ as qij 6= 1, t→∞ :ϕi denotesthe
initial value of xi at s ∈ [τi, 0], τi = min1≤j≤n{qij}. aij(t), bij(t) ∈ A are first-
order and second-order connection weights of the natural network, ηi(t) > 0 and
ρij(t), σij(t), νij(t) > 0 correspond to the leakage and transmission delays, respectively,
Ii(t) ∈ A denotes the external inputs at time t, and fj, gj : A → A is the activation
function for signal transmission of the i-th neuron.
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2. Preliminaries and notations

The Clifford algebra was establishment by the British mathematician William K.
Clifford in 1878 which is a generalization of the plural, quaternion, and Glassman
algebra.

To begin with, we introduce the definition and properties of Clifford algebra which
is well known. We shall refer to [2], [13], [15] and references therein.

Clifford algebra over Rn is defined as A = {
∑

A⊂{1,2,3,··· ,m} a
AeA, a

A ∈ R} where

eA = eh1eh2 · · · ehµ , with A = {h1, h2, · · · , hµ}, 1 ≤ h1 < h2 < h2 < · · · < hµ ≤ m.

Moreover, e∅ = e0 = 1 and e{h} = eh, h = 1, 2, · · · ,m are called Clifford generators
which satisfy the Hamilton’s multiplication rules; the relations e2

i = −1 and eiej +
ejei = 0, i = j, i, j = 1, 2, 3, · · · ,m. For simplicity, when one element is the product
of multiple Clifford generators, we will write its subscripts together.For example,
e1e2 = e12 and e3e7e2e5 = e3725. We define ∆ = {∅, 1, 2, · · ·A, · · · , 12 · · ·m} then it
is easy to see that A = {

∑
A a

AeA, a
A ∈ R}, where

∑
A is a brief form of

∑
A∈4 and

dimRA =
∑m

k=o

(
m
0

)
= 2m.

For any Clifford number x =
∑

A x
AeA ∈ A, the involution of x is defined as x̄ =∑

A a
AēA where ēA = (−1)

σ[A](σ[A]+1)
2 and

σ[A] =

{
0, if A = ∅
µ, if A = h1h2 · · ·hµ.

From the definition, it is directly deduced that eAēA = ēAeA = 1. Moreover, for
Clifford-valued function x =

∑
A x

AeA where xA : R → R, A ∈ A, and its derivative

is given by dx(t)
dt

=
∑

A
dxA

dt
dteA. Since eB ēA = (−1)

σ[A](σ[A]+1)
2 eBeA, we can write

eB ēA = ec or eB ēA = −ec, where ec is a basis of Clifford algebra A. For example,
eh1h2 ēh2h3 = −eh1h2eh2h3 = −eh1eh2eh3 = −eh1(−1)eh3eh1eh3 = eh1h3 . Hence it is
possible to find a unique corresponding basis ec for the given eB ēA.
Define

σ[B · Ā] =

{
0, if eB ēA = ec
µ, if eB ēA = −ec

and then eB ēA = (−1)σ[B·Ā]ec.

In addition, for any g ∈ A, we can find gc a unique satisfying gB·Ā = (−1)σ[B·Ā]gc for
eB ēA = (−1)σ[B·Ā]ec. Hence gB·ĀeB ēA = gB·Ā(−1)σ[B·Ā] eC = (−1)σ[B·Ā]gCb(−1)σ[B·Ā]eC

= gCeC and g =
∑

C g
CeC ∈ A.

Remark 1. Clifford-valued system (1) includes real-valued systems and complex-
valued systems as its special cases. In fact system (1), when m, the number of
the generators of A, equals m = 0, m = 1 and m = 2, system (1) degenerates
into real-valued, complex-valued, and quternion-valued systems as its special cases,
respectively [8].
Next, let (X, || · ||) be a Banach space and BC(R, X) be the set of all bounded
continuous functions from R to X. For a given T > 0 and each ρ(weights) ∈ U , set

µ(T, ρ)=
∫ T
−T ρ(t)dt.
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In order to facilitate our discussion, we introduce the following notations:

U = {ρ : R→ (0,∞) : locally integrable on R with ρ > 0 (a.e.)},
U∞ = {ρ ∈ U : lim

T→∞
µ(T, ρ) =∞},

BC(R,Rn) = {f : R→ Rn, the bounded continuous functions}.

Note that (BC(R,Rn), || · ||∞) is a Banach space where || · ||∞ denote the sup norm

||f ||∞ := max
1≤i≤n

sup
t∈R
|fi(t)|.

Conveniently, we introduce some notations. We will use x = (x1, · · · , xn)T to denote
a column vector, in which the symbol (·T ) denotes the transpose of a vector. We let
|x| denote the absolute-value vector given by |x| = (|x1|, |x2|, · · · , |xn|)T and define
||x|| = max1≤i≤n |xi|. And we put ϕ = {ϕj(t)} = (ϕ1(t), ϕ2(t), · · ·ϕn(t))T .
Lastly, we review some definitions and lemmas well known from our references ( [2],
[3], [4], [10], [11], [14], [1], [12], [13], [15]) and references therein.

Definition 2.1. A function f ∈ BC(R,A) is called almost automorphic, if for
every sequence of real numbers (s

′
n)n∈N there exists a subsequence (sn)n∈N such that

g(t) = lim
n→∞

f(t+ sn)

is well defined for each t ∈ R, and

lim
n→∞

g(t− sn) = f(t)

for each t ∈ R. Denote by AA(R,A) the collection of such functions.

Lemma 2.2. If α ∈ R, f, g ∈ AA(R,A), then αf, f + g ∈ AA(R,A).

Lemma 2.3. If x ∈ C(R,A) satisfy the Lipschitz condition and ϕ ∈ AA(R,A),
then f(ϕ(·)) ∈ AA(R,A).

Lemma 2.4. If f ∈ AA(R,A), η ∈ (R,R), then f(·, η(·)) ∈ AA(R,A).

Definition 2.5. The Bochner transform f b(t, s), t ∈ R, s ∈ [0, 1] of a function
f : R→ X is defined by f b(t, s) := f(t+ s).

Definition 2.6. Let p ∈ [1,∞). The space BSp(R,A) of all Stepanov bounded
functions, with the exponent p consists of all measurable functions f : R → A such
that f b ∈ Lp(R;Lp((0, 1),A)). This is a Banach space with the norm

||f ||Sp := sup
t∈R

(∫ t+1

t

||f(τ)||pdτ
) 1
p
.

We define the Stepanov weighted ergodic space, for f ∈ BC(R,A),

PAA0(Lp([0, 1],A), ρ)

=
{
f : lim

T→∞

1

µ(T, ρ)

∫ T

−T

(∫ t+1

t

||f(s)||pds
) 1
p
ρ(t)dt = 0

}
.

Definition 2.7. Let ρ1, ρ2 ∈ U∞. A function f ∈ BSp(R,A) is said to be
a Stepanov-weighted pseudo almost automorphic(Sp-weighted pseudo almost auto-
morphic) if it can be expressed as f = h + ϕ, where hb ∈ AA(R, (Lp((0, 1),A)),
ϕb ∈ PAA0(R, Lp((0, 1),A), ρ).
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The collection of such functions will be denoted by SpWPAA(R,A, ρ, p) which is
a closed subspace of BC(R, Lp([0, 1],A)) relatively to the norm || · ||Sp , and therefore
is a Banach space [1].

Definition 2.8. A function f =
∑n

i=1 f
AeA : R → A is said to be Stepanov

weighted pseudo almost automorphic, if fA ∈ SpWPAA(R,R, ρ, p) for all A ∈ ∆.

Note that M [ai] = limT→+∞
1
T

∫ t+T
t

ai(s)ds > 0, using the theory of exponential
dichotomy in [7], one can easily get the following lemma.

Lemma 2.9. For i = 1, 2, 3, · · · , n, and ai ∈ BC(R,Rn) with inft∈R ai(t) > 0. If
f ∈ BC(R,Rn), then the linear system

x
′
(t) = A(t)x(t) + f(t)

has a unique bounded solution

x(t) =

∫ t

−∞
e
∫ t
s A(u)duf(s)ds,

where A(t)=diag(−a1(t),−a2(t), · · · ,−an(t)).

3. Existence results for Stepanov weighted pseudo almost periodic solu-
tion

To overcome the difficulty for the non-commutativity of multiplication of Clifford
numbers, firstly we transform the Clifford-valued system (1) into the real-valued sys-
tem which is easily to handle. This can be established using by eAēA = ēAeA = 1 and
ēAeA = eB.
For any g ∈ A, we can find gc a unique satisfying gB·Ā = (−1)σ[B·Ā]gc for eB ēA =
(−1)σ[B·Ā]ec. So gB·ĀeB ēA = gBĀ(−1)σ[B·Ā]eC = (−1)σ[B·Ā]gCb(−1)σ[B·Ā]eC = gCeC
and g =

∑
C g

CeC ∈ A. By decomposing (1) into x =
∑

A x
AeA, we obtain that

x
′A
i (t) = −ci(t)xAi (t− ηi(t)) +

n∑
j=1

∑
B

aA·B̄ij (t)fBj (xj(t)),

+
n∑
j=1

∑
B∈Λ

bA·B̄ij (t)gBj (xj(qijt)) + IAi (t), · · · · · · (3),

xAi (s) = ϕAi (s), s ∈ [−τi, 0], i ∈ I,
where

xi(t) =
∑
A

xAi (t)eA, Ii(t) =
∑
A

IAi (t)eA,

aij(t) =
∑
A

aCij(t)eC , a
A·B̄
ij (t) = (−1)n[A·B̄]aCij(t),

bij(t) =
∑
A

bCij(t)eC , b
A·B̄
ij (t) = (−1)n[A·B̄]bCij(t),

gj(xj(qijt)) =
∑
B∈λ

gBj (ϕC1
j (qijt), ϕ

C2
j (qijt), · · · , xC2m

j (qijt))eB.
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Remark 2. It is clear that if x = (x0
1, x

1
1, · · · , x1·2····m

1 , x0
2, x

1
2, · · · , x1·2····m

2 , · · · , x0
n, x

1
n, · · · ,

x1·2····m
n )T : {xAi } is a solution to system (2), then x = (x1, x2, · · ·xn)T must be a solu-

tion to (1), where xi =
∑

A x
A
i eA, A ∈ ∆.

For the sake of convenience to work (3) we established some hypothesis and suffi-
cient criteria, which will be used in this paper, as following:

(H1) For i, j ∈ I and A,B ∈ ∆, ci(t) ∈ SpWPAA(A, ρ, p), aA·B̄ij (t),

bA·B̄ij (t), Ii(t) ∈ SpWPAA(R,A, ρ, p), τij(t), σij(t), µij(t) ∈ SpWPAA(R,A, ρ, p).
(H2) For any u, v ∈ A, functions fBj , g

B
j ∈ BC(A,R),there exist positive constant

Lfj , L
g
j such that

||fBj (u)− fBj (v)|| ≤ Lfj
∑
C∈∆

||uC − vC ||, fBj : R2m → R,

||gBj (u)− gBj (v)|| ≤ Lgj
∑
C∈∆

||uC − vC ||, fBj : R2m → R.

Additionally, we suppose that fBj (0) = gBj (0) = 0, where j ∈ I, A,B ∈ ∆.

(H3) Let D = {ϕ : ϕ ∈ SpWPAA(R,A, ρ, p)}, ||x||Sp = maxi∈I {maxA∈∆ |xAi |Sp}
and ϕ0 = {(ϕ0)Ai }, where

|xAi |Sp = sup
t∈R

(

∫ t+1

t

|xAi (s)|p ds)
1
p , (ϕ0)Ai (t) =

∫ t

−∞
e−

∫ t
s ai(u)duIAi (s)ds,

respectively. It is clear that D is a Banach space.

(H4) For i ∈ I, there is a function ãi ∈ BC(R, (0,+∞)) and a constant ki > 0
satisfying the following inequality:

e−
∫ t
s ai(u)du ≤ kie

−
∫ t
s ãi(u)du, for all t, s, ki ∈ R, t− s > 0,

and ϕ∗ = supt∈R |ϕ(t)| for f ∈ BC(R,R).

(H5) Put ( 2ki
ãi∗q

) 1
q
( 2ki
ãi∗p

) 1
p ||I||sp = k, ρ < 1,

ρk

1− ρ
< 1

where( ki
pãi∗

) 1
p
[(
c∗i η
∗
i

) 1
p

+ 2m max
A∈∆

n∑
j=1

(∑
B

aA·B̄ij (s)Lfj +
∑
B

bA·B̄ij (s)Lgj

)]
= ρ.

Using similar ideas as in [4], [13]. one can easily show the following result.

Lemma 3.1. Suppose that assumptions (H1) ∼ (H4) hold. Define the nonlinear
operator Γ as follows: for each ϕ = (ϕ1, ϕ2, · · · , ϕn) ∈ SpWPAA(A, ρ, p),Γϕ(t) :=
xϕ(t), where

xϕ(t) =
(∫ t

−∞
e−

∫ t
s auduF1(s)ds,

∫ t

−∞
e−

∫ t
s auduF2(s)ds, · · · ,

∫ t

−∞
e−

∫ t
s auduFn(s)ds

)T
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and

Fi(s) = −ci(t)xi(t− ηi(t)) +
n∑
j=1

aij(t)fj(xj(t))

+
n∑
j=1

bij(t)gj(xj(qijt)) + Ii(t), i = 1, 2, 3 . . . , n.

Then Γ maps SpWPAA(R,A, ρ, p) into itself.

Proof. For all 1 ≤ i ≤ n, the function Fi is Stepanov weighted pseudo almost
automorphic, by using Lemma 2.2 ∼ Lemma 2.4 and the composition theorem of
pseudo almost automorphic function [11]. Consequently, Fi can be expressed as

Fi = F 1
i + F 2

i

where F 1
i ∈ AA(R,A) and F 2

i ∈ PAA0(Lp([0, 1],A), ρ). So

(Γiϕ)(t)

=

∫ t

−∞
e−

∫ t
s ai(u)duF 1

i (s)ds+

∫ t

−∞
e−

∫ t
s ai(u)duF 2

i (s)ds

= (ΓiF
1
i )(t) + (ΓiF

2
i )(t).

Let (s
′
n)n∈N be a sequence of real numbers; since ai ∈ AA(R,A) and Γi ∈ AA(R,A),

we can extract a subsequence (sn)n∈N of (s
′
n)n∈N such that, for each t ∈ R,

lim
n→∞

ai(t+ sn) = ai, lim
n→∞

ai(t− sn) = ai, i = 1, 2, · · · , n

and

lim
n→∞

Γi(t+ sn) = Γi, lim
n→∞

Γi(t− sn) = Γp, i = 1, 2, · · · , n.

Set

(TiΓi)(t) =

∫ t

−∞
e−

∫ t
s āi(u)duΓ̄i(s)ds, i = 1, 2, · · · , n,

and we have

||TiΓi(t+ sn)− TiΓi(t)||A

=

∫ t+sn

−∞
e−

∫ t+sn
s ai(u)duF 1

i (s)ds+

∫ t

−∞
e−

∫ t
s ai(u)duF 2

i (s)ds

=

∫ t+sn

−∞
e−

∫ t
s−sn ai(ρ+sn)dρF 1

i (s)ds+

∫ t

−∞
e−

∫ t
s ai(u)duF 2

i (s)ds

=

∫ t

−∞
e−

∫ t
s ai(ρ+sn)dρF 1

i (s)ds+

∫ t

−∞
e−

∫ t
s ai(ρ+sn)dρF 2

i (s)ds

+

∫ t

−∞
e−

∫ t
s ai(ρ+sn)dρF 1

i (s)ds+

∫ t

−∞
e−

∫ t
s ai(u)duF 2

i (s)ds

=

∫ t

−∞
e−

∫ t
s ai(u+sn)du(F 1

i (s+ sn)− F 1
i ))ds+

∫ t

−∞
e−

∫ t
s ai(u+sn)du − e

∫ t
s a1(u)du)F 2

i (s)ds.
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By the Lebesgue dominated convergence theorem, we obtain that

lim
n→+∞

(TiΓi)(t+ sn) = (TiΓi)(t), for each t ∈ R, p = 1, 2, · · · , n.

Similarly, one can prove that

lim
n→+∞

(TiΓi)(t− sn) = (TiΓi)(t), for each t ∈ R, i = 1, 2, · · · , n,

which implies that ΓiF
1
i ∈ AA(R,A).

Next we show that ΓiF
2
i ∈ AA(R,A), by the Hölder inequality and Fubinis’s

theorem
(p−1 + q−1 = 1), we obtain that

||ΓiF 2
i ||

= lim
T→∞

1

µ(T, ρ)

∫ T

−T

[
sup
t∈R

∫ t+1

t
|
∫ z

−∞
e−

∫ t
s ai(u)duF 2

i (s)ds|pdz
] 1
p
ρ(t)dt

= lim
T→∞

1

µ(T, ρ)

∫ T

−T

[
sup
t∈R

∫ t+1

t
|
∫ z

−∞
kie
−

∫ t
s

˜ai(u)duF 2
i (s)ds|pdz

] 1
p
ρ(t)dt

≤ lim
T→∞

1

µ(T, ρ)

∫ T

−T

[
sup
t∈R

∫ t+1

t
|
∫ z

−∞
kie
−(z−s)ãi∗F 2

i (s)ds|pdz
] 1
p
ρ(t)dt

≤ lim
T→∞

1

µ(T, ρ)

∫ T

−T

[
sup
t∈R

∫ t+1

t

( 2

ãi∗

) p
q |
∫ 0

−∞
kie

˜ai∗ps
2 F 2

i (z + s)|pdsdz
] 1
p
ρ(t)dt

≤ lim
T→∞

1

µ(T, ρ)
(2T )

1
q

∫ T

−T

[
sup
t∈R

∫ t+1

t

( 2

ãi∗

) p
q |
∫ 0

−∞
kie

˜ai∗ps
2 F 2

i (z + s)|pρ(t)dsdzdt
] 1
p

≤ lim
T→∞

(
1

µ(T, ρ)
)
1
p (2T )

1
q

( 2

ãi∗

) 1
q

∫ 0

−∞
kie

˜ai∗ps
2

1

µ(T, ρ)

∫ T

−T

[
sup
t∈R

∫ t+1

t
|F 2
i (z + s)|pρ(t)dzdtds

] 1
p

≤ lim
T→∞

(
1

µ(T, ρ)
)
1
p (2T )

1
q

( 2

ãi∗

) 1
q

∫ 0

−∞
kie

˜ai∗ps
2

1

µ(T, ρ)

∫ T

−T

[
sup
t∈R

∫ t+1

t
|F 2
i (z + s)|qdz

) p
q
ρ(t)

dtds
] 1
p
( 2

ãi∗

) 1
q

∫ 0

−∞
kie

˜ai∗ps
2

1

µ(T, ρ)

∫ T

−T

[
sup
t∈R

∫ t+1

t
|F 2
i (z + s)|qdz

) 1
q
ρ(t)dtds

] 1
p

·
∫ t+1

t
|F 2
i (z + s)|qdz

) p−1
q
ρ(t)dtds

] 1
p ≤

(2ki
ãi∗

) 1
q ||F 2

i ||
p−1
p
∞

∫ 0

−∞
e

˜ai∗ps
2

1

µ(T, ρ)

∫ T

−T

[
sup
t∈R

∫ t+1

t

·|F 2
i (z + s)|qdz

) 1
q
ρ(t)dtds

] 1
p
.

Since F 2
i ∈ PAA0, ΓiF

2
i ∈ AA(R,A),

Γ maps into SpWPAA(R,A, ρ, p) itself in the region D.

By applying the similar mathematical analysis techniques in [5], we derive some new
sufficient conditions ensuring the existence, uniqueness and of weighted pseudo almost
periodic solutions of system (3).

Theorem 3.2. Assume that (H1 − H5) hold, then system (3) has a unique Sp

weighted pseudo almost automorphic solution in the region D∗ =
{
ϕ|ϕ ∈ D : ||ϕ −

ϕ0||Sp ≤ ρk
1−ρ

}
,
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where

ϕ0(t) =
(∫ t

−∞
e−

∫ t
s auduI1(s)ds,

∫ t

−∞
e−

∫ t
s auduI2(s)ds, · · · ,

∫ t

−∞
e−

∫ t
s auduIn(s)ds

)T
.

Proof. Firstly, it is easy to see that the region D is a closed convex subset of
SpWPAA(R,
A, ρ, p). Using the Holder inequality and Fubinis’s theorem we obtain

∣∣∣ ∫ 0

−∞
e−

∫ t
s ai(u)duI(s)ds

∣∣∣ ≤ ( 2ki
ãi∗q

) 1
q
[ ∫ 0

−∞
e

˜ai∗sp
2 |I(s+ t)|ds

] 1
p
,

||ϕ0(t)||Sp = sup
t∈R

[ ∫ t+1

t

|
∫ 0

−∞
e
∫ t
s ai(u)duI(s)|pdsdt

] 1
p

≤
( 2ki
ãi∗q

) 1
q

sup
t∈R

[ ∫ 0

−∞
e

˜ai∗sp
2

∫ t+1

t

|I(s+ t)|pdtds
] 1
p

≤
( 2ki
ãi∗q

) 1
q

sup
t∈R

[ ∫ 0

−∞
e

˜ai∗sp
2

∫ t+1

t

|I(t)|pdtds
] 1
p

≤
( 2ki
ãi∗q

) 1
q
( 2ki
ãi∗p

) 1
p ||I||sp

= k.

Therefore, for all ϕ ∈ D∗, by applying the estimate just obtained technique, we can
easily obtain:

||ϕ||SP ≤ ||ϕ− ϕ0||Sp + ||ϕ0||Sp ≤
ρk

1− ρ
+ k

and

||(Γϕ)Ai (t)− (ϕ0)Ai ||Sp

= sup
t∈R

{[∫ t+1

t

∣∣∣ ∫ w

−∞
e−

∫ w
s ai(u)du

(
ci(t)

∫ t

t−ηi(t)
ϕ
′
i(s)ds+

n∑
j=1

∑
B∈∆

aA·B̄ij

(s) · fBj (ϕj(s)) +

n∑
j=1

∑
B∈∆

bA·B̄ij (s)gBj (ϕj(qijt)
)]
ds
∣∣∣pdt} 1

p

≤ sup
t∈R

{[∫ t+1

t

∣∣∣ ∫ w

−∞
e−

∫ w
s ai(u)du

(
ci(t)

∫ t

t−ηi(t)
ϕ
′
i(s)
)
ds
∣∣∣pdw] 1

p

+
[ ∫ t+1

t

∣∣∣ ∫ w

−∞
e−

∫ w
s ai(u)du

n∑
j=1

∑
B∈∆

aA·B̄ij (s)fBj
(
ϕj(s)

)
ds
∣∣∣pdw] 1

p

+
[ ∫ t+1

t

∣∣∣ ∫ w

−∞
e−

∫ w
s ai(u)du

n∑
j=1

∑
B∈∆

bA·B̄ij (s)gBj (ϕj(qijt))
]
ds|pdw]

1
pdt}
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≤
∫ t+1

t

∫ ∞
0

kie
−pãi∗c∗i η

∗
i ||ϕ||Sp +

n∑
j=1

{[ ∑
B∈∆

aA·B̄ij (s)Lfj
∑
C∈∆

(

∫ t+1

t

∣∣ ∫ ∞
0

kie
−pãi∗

·|ϕCj (w − σ)|pdσdw)
1
p ] +

n∑
j=1

{[ ∑
B∈∆

bA·B̄ij (s)Lgj
∑
C∈∆

(

∫ t+1

t

∣∣ ∫ ∞
0

kie
−pãi∗

·|ϕCj (1− τ(w − σ))
∣∣pdσdw)

1
p ≤

( ki
pãi∗

) 1
p (
c∗i η
∗
i + 2m

n∑
j=1

(
∑
B∈∆

bA·B̄ij (s)Lgj

+
∑
B∈∆

bA·B̄ij (s)Lgj
)
||ϕ||Sp ≤

ρk

1− ρ
,

which implies that Γϕ ∈ D∗, therefore the mapping Γ is a self mapping from D∗ to
D∗.
We see that the equation (3) has a unique weighted pseudo almost periodic solution
as following

(xϕ)Ai (t) =

∫ t

−∞
e−

∫ t
s ai(u)du

[
ci(t)

∫ s

s−ηp(s)

xi(u)du+
n∑
j=1

∑
B∈∆

aA·B̄ij (s)

·fBj (ϕj(t)) +
n∑
j=1

∑
B∈∆

bA·B̄ij (s) · fBj (ϕj(qijt)) + IAi (s)
]
ds.

Define a mapping Γ : D∗ → D∗ by given (Φϕ) By using the Minkowski’s inequality,
we have

||(Γϕ)Ai − (Γψ)Ai ||Sp

= sup
t∈R

{∫ t+1

t

∣∣∣ ∫ t

−∞
e−

∫ t
s ai(u)du

[
ci(t)

∫ t

t−ηi(t)
(ϕ
′
i(s)− ψ

′
i(s))ds

+

n∑
j=1

∑
B∈∆

aA·B̄ij (s) · gBj (ϕj(t)− ψj) +

n∑
j=1

∑
B∈∆

bA·B̄ij (s)gBj (ϕj(qijt)− ψj(qijt))
]
ds
∣∣∣pdt} 1

p

≤ sup
t∈R

∫ t+1

t

∣∣∣ ∫ t

−∞
kie
−

∫ t
s ãi(u)du

[
(ci(t)

∫ t

t−ηi(t)
(ϕ
′
i(s)− ψ

′
i(s))ds

∣∣∣pdt} 1
p

+

∫ t+1

t

∣∣∣ ∫ t

−∞
kie
−

∫ t
s ãi(u)du

n∑
j=1

∑
B∈∆

aA·B̄ij (s) · fBj (ϕj(t)− ψj(t))ds
∣∣∣pdt} 1

p

+

∫ t+1

t

∣∣∣ ∫ t

−∞
kie
−

∫ t
s ãi(u)du

n∑
j=1

∑
B∈∆

bA·B̄ij (s) · gBj (ϕj(qijt)− ψj(qijt))ds
∣∣∣pdt} 1

p

≤
( ki
pãi∗

) 1
p
2m max

A∈∆

[
(c∗i η

∗
i )

1
p +

∑
B∈∆

( n∑
j=1

aA·B̄ij (s)Lfj +
n∑
j=1

bA·B̄ij (s)Lgj
)]
||ϕ− ψ||Sp ,

≤ ρ||ϕ− ψ||Sp
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where

ρ =
( ki
pãi∗

) 1
p
2m max

A∈∆

[
(c∗i η

∗
i )

1
p +

∑
B∈∆

( n∑
j=1

aA·B̄ij (s)Lfj +
n∑
j=1

bA·B̄ij (s)Lgj
)]
.

Since ρ < 1, it implies that Γ : D∗ → D∗ is a contraction mapping. By Contraction
mapping principle of the D∗, we obtain that the mapping Γ has a unique fixed point
z ∈ D∗ such that Γ which means that the equation (2) has a unique weighted pseudo
almost periodic solution. The proof of the theorem is completed.

4. Examples

In this section we consider a simple application of our abstracts results we give an
modified example [13], [15] for n = 2 as the following neural networks with time-varing
leakage delays:

x′i(t) = −ci(t)xi(t− ηi(t)) +
2∑
j=1

aij(t)fj(xj(t)) · · · · · · (4)

+
2∑
j=1

bij(t)gj(xj(t− ρij(t))) + Ii(t), t ≥ 0,

where
xi(t) = x0

i (t)e0 + x1
i (t)e1 + x2

i (t)e2 + x12
i (t)e12 ∈ A,

fj(xj) = 1
20
e0sinx

0
j + 1

21
e1sinx

1
j + + 1

25
e2sinx

2
j + 1

27
e12sinx

12
j , j = 1, 2,

gj(xj) = 1
13
e0sinx

0
j + 1

15
e1sinx

1
j + + 1

17
e2sinx

2
j + 1

18
e12sinx

12
j , j = 1, 2,(

I1(t)
I2(t)

)
=

(
(1

2
sin2
√

5t+ 2
1+t2

)e0 + 1
20
sin
√

3t 1
12
e2cos2

√
3t+ 1

15
e12sin

√
6t

(1
2
sin2
√

3t+ 3
1+t2

)e0 + 1
12
sin
√

6t 1
10
e2cos

√
7t+ 1

20
e12sin

√
3t

)
,

(
a1(t)
a2(t)

)
=

(
1 + 0.1sin

√
2t

1.2 + 0.2cos
√

3t

)
,

(
η1(t)
η2(t)

)
=

(
0.15 + 0.02sin

√
2t

0.16 + 0.012cos
√

3t

)
,

(
b11(t) b12(t)
b21(t) b22(t)

)
=

(
0.1e0sin

√
6t+ 0.2e1sin

√
6t 0.13e0 + 0.1e12sin

√
7t

0.1e0 + 0.1e1cos
√

5t+ 0.2e12cos
√

2t 0.11e0 + 0.2e2sin
√

3t

)
,

(
c11(t) c12(t)
c21(t) c22(t)

)
=

(
0.16e0sin

√
3t+ 0.12e1sin

√
3t 0.12e0 + 0.1e12sin

√
7t

0.15e0 + 0.13e1cos
√

5t+ 0.12e12cos
√

4t 0.12e0 + 0.12e2sin
√

3t

)
.

By detailed calculation, we get:

ρ =
(

ki
pãi∗

) 1
p
2m maxA∈∆

[
(c∗i η

∗
i )

1
p +

∑
B∈∆

(∑n
j=1 a

A·B̄
ij (s)Lfj +

∑n
j=1 b

A·B̄
ij (s)Lgj

)]
< 1.

Henceforth, we can show easily that all the conditions in our main Theorem 3.2
are satisfied, which means the existence unique Stepanov weighted pseudo almost
automorphic solution of (4).
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