DOI QR코드

DOI QR Code

밀링과 소결과정이 지르코니아 보철물의 완성도에 미치는 영향에 관한 문헌고찰

Effect of milling and sintering process on integrity of zirconia prosthesis: a literature review

  • 이기운 (강릉원주대학교 치과대학 보철학교실 및 구강과학연구소) ;
  • 고경호 (강릉원주대학교 치과대학 보철학교실 및 구강과학연구소) ;
  • 허윤혁 (강릉원주대학교 치과대학 보철학교실 및 구강과학연구소) ;
  • 박찬진 (강릉원주대학교 치과대학 보철학교실 및 구강과학연구소) ;
  • 조리라 (강릉원주대학교 치과대학 보철학교실 및 구강과학연구소)
  • Lee, Kiun (Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University) ;
  • Ko, Kyung-Ho (Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University) ;
  • Huh, Yoon-Hyuk (Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University) ;
  • Park, Chan-Jin (Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University) ;
  • Cho, Lee-Ra (Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University)
  • 투고 : 2022.07.05
  • 심사 : 2022.08.27
  • 발행 : 2022.09.30

초록

지르코니아는 다양한 공정과정을 거쳐서 제작되며, 각각의 요소는 최종 보철물의 물성에 영향을 줄 수 있다. 특히 밀링과정과 소결과정이 모두 지르코니아 보철물의 최종 완성도(integrity)에 영향을 미칠 수 있다. 밀링머신은 대부분 초정밀 5축 가공방식을 채택하고 있으며 어떤 방식을 사용하고 밀링기구를 어떻게 관리하는가에 따라서도 결과가 달라진다. 밀링블록은 절삭의 효율성과 심미재현성에 따라 선택하는데 물성의 변화를 야기할 수 있음은 주의해야 한다. 소결방식은 입자성장과 광학적 특성에 영향을 미칠 수 있는데 속도를 조절하는 최근의 방식에 대해서는 추가적인 연구가 동반되어야 정확한 평가가 이루어질 수 있다. 소결온도 뿐 아니라 온도 유지시간도 최종결과물에 영향을 줄 수 있다.

Zirconia is fabricated through various processes. Each element in fabricating process can affect the physical properties of the definitive prosthesis. In particular, both the milling process and the sintering process can affect the final integrity of the zirconia prosthesis. Most of the milling machines adopt the ultra-precision 5-axis machining method, and the results vary depending on which milling method was used and how the milling equipment was managed. Milling blocks are selected according to cutting efficiency and aesthetic reproducibility. The sintering method can affect the grain growth and optical properties, and an accurate evaluation can be made only with additional research on the recent speed sintering procedure. Not only the sintering temperature but also the temperature holding time can affect the quality of definitive prosthesis.

키워드

참고문헌

  1. Zhang Y, Lawn BR. Novel zirconia materials in dentistry. J Dent Res 2018;97:140-7. https://doi.org/10.1177/0022034517737483
  2. Lebon N, Tapie L, Vennat E. Influence of milling tool and prosthetic materials on roughness of the dental CAD CAM prostheses in end milling mode. Appl Sci 2020;10:2238. https://doi.org/10.3390/app10072238
  3. Ahmed WM, Troczynski T, McCullagh AP, Wyatt CCL, Carvalho RM. The influence of altering sintering protocols on the optical and mechanical properties of zirconia: A review. J Esthet Restor Dent 2019;31:423-30. https://doi.org/10.1111/jerd.12492
  4. Schweiger J, Kieschnick A. CAD/CAM in digital dentistry. Seoul; DaehanNarae; 2017. p. 91-108.
  5. Bosch G, Ender A, Mehl A. A 3-dimensional accuracy analysis of chairside CAD/CAM milling processes. J Prosthet Dent 2014;112:1425-31. https://doi.org/10.1016/j.prosdent.2014.05.012
  6. Sadilek M, Poruba Z, Cepova L, Sajgalik M. Increasing the accuracy of free-form surface multiaxis milling. Materials (Basel) 2020;14:25. https://doi.org/10.3390/ma14010025
  7. Lebon N, Tapie L, Vennat E, Mawussi B. A computer-aided tool to predict dental crown prosthesis surface integrity after milling. Comput Aided Des Appl 2019;16:894-903. https://doi.org/10.14733/cadaps.2019.894-903
  8. Benoit A, Issaoui H, Lebon N. Impact of machining process on the flexural strength of CAD/CAM blocks for dental restorations. Comput Methods Biomech Biomed Engin 2020;23:S31-2. https://doi.org/10.1080/10255842.2020.1811501
  9. Lebon N, Tapie L, Vennat E, Mawussi B. Influence of CAD/CAM tool and material on tool wear and roughness of dental prostheses after milling. J Prosthet Dent 2015;114:236-47. https://doi.org/10.1016/j.prosdent.2014.12.021
  10. Burgess JO. Zirconia: The material, its evolution, and composition. Compend Contin Educ Dent 2018;39:4-8.
  11. Saridag S, Tak O, Alniacik G. Basic properties and types of zirconia: An overview. World J Stomatol 2013;2:40-7. https://doi.org/10.5321/wjs.v2.i3.40
  12. Michailova M, Elsayed A, Fabel G, Edelhoff D, Zylla IM, Stawarczyk B. Comparison between novel strength-gradient and color-gradient multilayered zirconia using conventional and high-speed sintering. J Mech Behav Biomed Mater 2020;111:103977. https://doi.org/10.1016/j.jmbbm.2020.103977
  13. Rosentritt M, Preis V, Schmid A, Strasser T. Multilayer zirconia: Influence of positioning within blank and sintering conditions on the in vitro performance of 3-unit fixed partial dentures. J Prosthet Dent 2022;127:141-5. https://doi.org/10.1016/j.prosdent.2020.11.009
  14. Suzuki S, Katsuta Y, Ueda K, Watanabe F. Marginal and internal fit of three-unit zirconia fixed dental prostheses: Effects of prosthesis design, cement space, and zirconia type. J Prosthodont Res 2020;64:460-7. https://doi.org/10.1016/j.jpor.2019.12.005
  15. Ueda K, Watanabe F, Katsuta Y, Seto M, Ueno D, Hiroyasu K, Suzuki S, Erdelt K, Guth JF. Marginal and internal fit of three-unit fixed dental prostheses fabricated from translucent multicolored zirconia: Framework versus complete contour design. J Prosthet Dent 2021;125:340.e1-6.
  16. Oghbaei M, Mirzaee O. Microwave versus conventional sintering: A review of fundamentals, advantages and applications. J Alloys Compounds 2010;494:175-89. https://doi.org/10.1016/j.jallcom.2010.01.068
  17. Luz JN, Kaizer MDR, Ramos NC, Anami LC, Thompson VP, Saavedra G, Zhang Y. Novel speed sintered zirconia by microwave technology. Dent Mater 2021;37:875-81. https://doi.org/10.1016/j.dental.2021.02.026
  18. Lawson NC, Maharishi A. Strength and translucency of zirconia after high-speed sintering. J Esthet Restor Dent 2020;32:219-25. https://doi.org/10.1111/jerd.12524
  19. Stawarczyk B, Ozcan M, Hallmann L, Ender A, Mehl A, Hammerlet CH. The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clin Oral Investig 2013;17:269-74. https://doi.org/10.1007/s00784-012-0692-6
  20. Grambow J, Wille S, Kern M. Impact of changes in sintering temperatures on characteristics of 4YSZ and 5YSZ. J Mech Behav Biomed Mater 2021;120:104586. https://doi.org/10.1016/j.jmbbm.2021.104586
  21. Too TDC, Inokoshi M, Nozaki K, Shimizubata M, Nakai H, Liu H, Minakuchi S. Influence of sintering conditions on translucency, biaxial flexural strength, microstructure, and low-temperature degradation of highly translucent dental zirconia. Dent Mater J 2021;40:1320-8. https://doi.org/10.4012/dmj.2020-448
  22. Kilinc H, Sanal FA. Effect of sintering and aging processes on the mechanical and optical properties of translucent zirconia. J Prosthet Dent 2021;126:129.e1-7.
  23. Ebeid K, Wille S, Hamdy A, Salah T, El-Etreby A, Kern M. Effect of changes in sintering parameters on monolithic translucent zirconia. Dent Mater 2014;30:e419-24. https://doi.org/10.1016/j.dental.2014.09.003
  24. Durkan R, Simsek H, Deste Gokay G, Yilmaz B. Effects of sintering time on translucency and color of translucent zirconia ceramics. J Esthet Restor Dent 2021;33:654-9. https://doi.org/10.1111/jerd.12723
  25. Sato T, Ishitsuka M, Shimada M. Thermal shock resistance of ZrO2 based ceramics. Mater Des 1988;9:204-12. https://doi.org/10.3390/ma9030204
  26. Kaizer MR, Gierthmuehlen PC, Dos Santos MB, Cava SS, Zhang Y. Speed sintering translucent zirconia for chairside one-visit dental restorations: Optical, mechanical, and wear characteristics. Ceram Int 2017;43:10999-1005. https://doi.org/10.1016/j.ceramint.2017.05.141
  27. Yang CC, Ding SJ, Lin TH, Yan M. Mechanical and optical properties evaluation of rapid sintered dental zirconia. Ceram Int 2020;46:26668-74. https://doi.org/10.1016/j.ceramint.2020.07.137
  28. Asaad R, Aboushahba ME. Influence of different sintering protocols on translucency and fracture resistance of monolithic zirconia crowns. Egypt Dent J 2020;66:2649-60.
  29. Kim KB, Kim JH, Lee KW. The influence of microwave sintering process on the adaptation of CAD/CAM zirconia core. J Dent Rehabil Appl Sci 2009;25:95-107.
  30. Monaco C, Prete F, Leonelli C, Esposito L, Tucci A. Microstructural study of microwave sintered zirconia for dental applications. Ceram Int 2015;41:1255- 61. https://doi.org/10.1016/j.ceramint.2014.09.055
  31. Ramesh S, Zulkifli NI, Tan CY, Wong YH, Tarlochan F, Ramesh S, Teng W, Sopyan I, Bang LT, Sarhan AAD. Comparison between microwave and conventional sintering on the properties and microstructural evolution of tetragonal zirconia. Ceram Int 2018;44:8922-7. https://doi.org/10.1016/j.ceramint.2018.02.086
  32. Cokic SM, Vleugels J, Van Meerbeek B, Camargo B, Willems E, Li M, Zhang F. Mechanical properties, aging stability and translucency of speed-sintered zirconia for chairside restorations. Dent Mater 2020;36:959-72. https://doi.org/10.1016/j.dental.2020.04.026
  33. Liu H, Inokoshi M, Nozaki K, Shimizubata M, Nakai H, Cho Too TD, Minakuchi S. Influence of high-speed sintering protocols on translucency, mechanical properties, microstructure, crystallography, and low-temperature degradation of highly translucent zirconia. Dent Mater 2022;38:451-68 https://doi.org/10.1016/j.dental.2021.12.028
  34. Ahmed WM, Abdallah MN, McCullagh AP, Wyatt CCL, Troczynski T, Carvalho RM. Marginal discrepancies of monolithic zirconia crowns: The influence of preparation designs and sintering techniques. J Prosthodont 2019;28:288-98. https://doi.org/10.1111/jopr.13021
  35. Nakamura T, Nakano Y, Usami H, Okamura S, Wakabayashi K, Yatani H. In vitro investigation of fracture load and aging resistance of high-speed sintered monolithic tooth-borne zirconia crowns. J Prosthodont Res 2020;64:182-7 https://doi.org/10.1016/j.jpor.2019.07.003
  36. Elisa Kauling A, Guth JF, Erdelt K, Edelhoff D, Keul C. Influence of speed sintering on the fit and fracture strength of 3-unit monolithic zirconia fixed partial dentures. J Prosthet Dent 2020;124:380-6. https://doi.org/10.21608/edj.2020.42653.1257