참고문헌
- Zhang Y, Lawn BR. Novel zirconia materials in dentistry. J Dent Res 2018;97:140-7. https://doi.org/10.1177/0022034517737483
- Lebon N, Tapie L, Vennat E. Influence of milling tool and prosthetic materials on roughness of the dental CAD CAM prostheses in end milling mode. Appl Sci 2020;10:2238. https://doi.org/10.3390/app10072238
- Ahmed WM, Troczynski T, McCullagh AP, Wyatt CCL, Carvalho RM. The influence of altering sintering protocols on the optical and mechanical properties of zirconia: A review. J Esthet Restor Dent 2019;31:423-30. https://doi.org/10.1111/jerd.12492
- Schweiger J, Kieschnick A. CAD/CAM in digital dentistry. Seoul; DaehanNarae; 2017. p. 91-108.
- Bosch G, Ender A, Mehl A. A 3-dimensional accuracy analysis of chairside CAD/CAM milling processes. J Prosthet Dent 2014;112:1425-31. https://doi.org/10.1016/j.prosdent.2014.05.012
- Sadilek M, Poruba Z, Cepova L, Sajgalik M. Increasing the accuracy of free-form surface multiaxis milling. Materials (Basel) 2020;14:25. https://doi.org/10.3390/ma14010025
- Lebon N, Tapie L, Vennat E, Mawussi B. A computer-aided tool to predict dental crown prosthesis surface integrity after milling. Comput Aided Des Appl 2019;16:894-903. https://doi.org/10.14733/cadaps.2019.894-903
- Benoit A, Issaoui H, Lebon N. Impact of machining process on the flexural strength of CAD/CAM blocks for dental restorations. Comput Methods Biomech Biomed Engin 2020;23:S31-2. https://doi.org/10.1080/10255842.2020.1811501
- Lebon N, Tapie L, Vennat E, Mawussi B. Influence of CAD/CAM tool and material on tool wear and roughness of dental prostheses after milling. J Prosthet Dent 2015;114:236-47. https://doi.org/10.1016/j.prosdent.2014.12.021
- Burgess JO. Zirconia: The material, its evolution, and composition. Compend Contin Educ Dent 2018;39:4-8.
- Saridag S, Tak O, Alniacik G. Basic properties and types of zirconia: An overview. World J Stomatol 2013;2:40-7. https://doi.org/10.5321/wjs.v2.i3.40
- Michailova M, Elsayed A, Fabel G, Edelhoff D, Zylla IM, Stawarczyk B. Comparison between novel strength-gradient and color-gradient multilayered zirconia using conventional and high-speed sintering. J Mech Behav Biomed Mater 2020;111:103977. https://doi.org/10.1016/j.jmbbm.2020.103977
- Rosentritt M, Preis V, Schmid A, Strasser T. Multilayer zirconia: Influence of positioning within blank and sintering conditions on the in vitro performance of 3-unit fixed partial dentures. J Prosthet Dent 2022;127:141-5. https://doi.org/10.1016/j.prosdent.2020.11.009
- Suzuki S, Katsuta Y, Ueda K, Watanabe F. Marginal and internal fit of three-unit zirconia fixed dental prostheses: Effects of prosthesis design, cement space, and zirconia type. J Prosthodont Res 2020;64:460-7. https://doi.org/10.1016/j.jpor.2019.12.005
- Ueda K, Watanabe F, Katsuta Y, Seto M, Ueno D, Hiroyasu K, Suzuki S, Erdelt K, Guth JF. Marginal and internal fit of three-unit fixed dental prostheses fabricated from translucent multicolored zirconia: Framework versus complete contour design. J Prosthet Dent 2021;125:340.e1-6.
- Oghbaei M, Mirzaee O. Microwave versus conventional sintering: A review of fundamentals, advantages and applications. J Alloys Compounds 2010;494:175-89. https://doi.org/10.1016/j.jallcom.2010.01.068
- Luz JN, Kaizer MDR, Ramos NC, Anami LC, Thompson VP, Saavedra G, Zhang Y. Novel speed sintered zirconia by microwave technology. Dent Mater 2021;37:875-81. https://doi.org/10.1016/j.dental.2021.02.026
- Lawson NC, Maharishi A. Strength and translucency of zirconia after high-speed sintering. J Esthet Restor Dent 2020;32:219-25. https://doi.org/10.1111/jerd.12524
- Stawarczyk B, Ozcan M, Hallmann L, Ender A, Mehl A, Hammerlet CH. The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clin Oral Investig 2013;17:269-74. https://doi.org/10.1007/s00784-012-0692-6
- Grambow J, Wille S, Kern M. Impact of changes in sintering temperatures on characteristics of 4YSZ and 5YSZ. J Mech Behav Biomed Mater 2021;120:104586. https://doi.org/10.1016/j.jmbbm.2021.104586
- Too TDC, Inokoshi M, Nozaki K, Shimizubata M, Nakai H, Liu H, Minakuchi S. Influence of sintering conditions on translucency, biaxial flexural strength, microstructure, and low-temperature degradation of highly translucent dental zirconia. Dent Mater J 2021;40:1320-8. https://doi.org/10.4012/dmj.2020-448
- Kilinc H, Sanal FA. Effect of sintering and aging processes on the mechanical and optical properties of translucent zirconia. J Prosthet Dent 2021;126:129.e1-7.
- Ebeid K, Wille S, Hamdy A, Salah T, El-Etreby A, Kern M. Effect of changes in sintering parameters on monolithic translucent zirconia. Dent Mater 2014;30:e419-24. https://doi.org/10.1016/j.dental.2014.09.003
- Durkan R, Simsek H, Deste Gokay G, Yilmaz B. Effects of sintering time on translucency and color of translucent zirconia ceramics. J Esthet Restor Dent 2021;33:654-9. https://doi.org/10.1111/jerd.12723
- Sato T, Ishitsuka M, Shimada M. Thermal shock resistance of ZrO2 based ceramics. Mater Des 1988;9:204-12. https://doi.org/10.3390/ma9030204
- Kaizer MR, Gierthmuehlen PC, Dos Santos MB, Cava SS, Zhang Y. Speed sintering translucent zirconia for chairside one-visit dental restorations: Optical, mechanical, and wear characteristics. Ceram Int 2017;43:10999-1005. https://doi.org/10.1016/j.ceramint.2017.05.141
- Yang CC, Ding SJ, Lin TH, Yan M. Mechanical and optical properties evaluation of rapid sintered dental zirconia. Ceram Int 2020;46:26668-74. https://doi.org/10.1016/j.ceramint.2020.07.137
- Asaad R, Aboushahba ME. Influence of different sintering protocols on translucency and fracture resistance of monolithic zirconia crowns. Egypt Dent J 2020;66:2649-60.
- Kim KB, Kim JH, Lee KW. The influence of microwave sintering process on the adaptation of CAD/CAM zirconia core. J Dent Rehabil Appl Sci 2009;25:95-107.
- Monaco C, Prete F, Leonelli C, Esposito L, Tucci A. Microstructural study of microwave sintered zirconia for dental applications. Ceram Int 2015;41:1255- 61. https://doi.org/10.1016/j.ceramint.2014.09.055
- Ramesh S, Zulkifli NI, Tan CY, Wong YH, Tarlochan F, Ramesh S, Teng W, Sopyan I, Bang LT, Sarhan AAD. Comparison between microwave and conventional sintering on the properties and microstructural evolution of tetragonal zirconia. Ceram Int 2018;44:8922-7. https://doi.org/10.1016/j.ceramint.2018.02.086
- Cokic SM, Vleugels J, Van Meerbeek B, Camargo B, Willems E, Li M, Zhang F. Mechanical properties, aging stability and translucency of speed-sintered zirconia for chairside restorations. Dent Mater 2020;36:959-72. https://doi.org/10.1016/j.dental.2020.04.026
- Liu H, Inokoshi M, Nozaki K, Shimizubata M, Nakai H, Cho Too TD, Minakuchi S. Influence of high-speed sintering protocols on translucency, mechanical properties, microstructure, crystallography, and low-temperature degradation of highly translucent zirconia. Dent Mater 2022;38:451-68 https://doi.org/10.1016/j.dental.2021.12.028
- Ahmed WM, Abdallah MN, McCullagh AP, Wyatt CCL, Troczynski T, Carvalho RM. Marginal discrepancies of monolithic zirconia crowns: The influence of preparation designs and sintering techniques. J Prosthodont 2019;28:288-98. https://doi.org/10.1111/jopr.13021
- Nakamura T, Nakano Y, Usami H, Okamura S, Wakabayashi K, Yatani H. In vitro investigation of fracture load and aging resistance of high-speed sintered monolithic tooth-borne zirconia crowns. J Prosthodont Res 2020;64:182-7 https://doi.org/10.1016/j.jpor.2019.07.003
- Elisa Kauling A, Guth JF, Erdelt K, Edelhoff D, Keul C. Influence of speed sintering on the fit and fracture strength of 3-unit monolithic zirconia fixed partial dentures. J Prosthet Dent 2020;124:380-6. https://doi.org/10.21608/edj.2020.42653.1257