DOI QR코드

DOI QR Code

Preparation and Electrochemical Characterization of Porous Carbon Foam from Waste Floral Foam for Supercapacitors

폐 플로랄 폼을 이용한 슈퍼커패시터용 다공성 탄소 폼 제조 및 전기화학 성능 평가

  • Lee, Byoung-Min (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Park, Jin-Ju (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Park, Sang-Won (Institute of Chemical and Biological Engineering, Chungnam National University) ;
  • Yun, Je Moon (Division of Advanced Materials Engineering, Dong-Eui University) ;
  • Choi, Jae-Hak (Department of Polymer Science and Engineering, Chungnam National University)
  • 이병민 (충남대학교 고분자공학과) ;
  • 박진주 (충남대학교 고분자공학과) ;
  • 박상원 (충남대학교 바이오응용화학연구소) ;
  • 윤제문 (동의대학교 신소재공학부) ;
  • 최재학 (충남대학교 고분자공학과)
  • Received : 2022.07.28
  • Accepted : 2022.09.02
  • Published : 2022.09.27

Abstract

The recycling of solid waste materials to fabricate carbon-based electrode materials is of great interest for low-cost green supercapacitors. In this study, porous carbon foam (PCF) was prepared from waste floral foam (WFF) as an electrode material for supercapacitors. WFF was directly carbonized at various temperatures of 600, 800, and 1,000 ℃ under an inert atmosphere. The WFF-derived PCF (C-WFF) was found to have a specific surface area of 458.99 m2/g with multi-modal pore structures. The supercapacitive behavior of the prepared C-WFF was evaluated using a three-electrode system in a 6 M KOH aqueous electrolyte. As a result, the prepared C-WFF as an active material showed a high specific capacitance of 206 F/g at 1 A/g, a rate capability of 36.4 % at 20 A/g, a specific power density of 2,500 W/kg at an energy density of 2.68 Wh/kg, and a cycle stability of 99.96 % at 20 A/g after 10,000 cycles. These results indicate that the C-WFF prepared from WFF could be a promising candidate as an electrode material for high-performance green supercapacitors.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (2021R1F1A1045950 and 2022R1F1A1062855) of the Republic of Korea.

References

  1. H. S. Chang, A. R. Hwang, B. M. Lee, J. M. Yun and J. H. Choi, Korean J. Mater. Res., 31, 502 (2021).
  2. Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen and Y. Chen, J. Phys. Chem. C, 113, 13103 (2009).
  3. B. M. Lee, H. S. Chang, J. H. Choi and S. K . Hong, Korean J. Mater. Res., 31, 264 (2021).
  4. R. Vinodh, C. V. V. M. Gopi, V. G. R. Kummara, R. Atchudan, T. Ahamad, S. Sambasivam, M. Yi, I. M. Obaidat and H. J. Kim, J. Energy Storage, 32, 101831 (2020).
  5. C. Ma, Y. Song, J. Shi, D. Zhang, X. Zhai, M. Zhong, Q. Guo and L. Liu, Carbon, 51, 290 (2013).
  6. L. Pang, B. Zou, Y. Zou, X. Han, L. Cao, W. Wang and Y. Guo, Colloids Surf. A, 504, 26 (2016).
  7. X. Yan, X. Li, Z. Yan and S. Komarneni, Appl. Surf. Sci., 308, 306 (2014).
  8. F. Shen, M. Qiu, Y. Hua and X. Qi, ChemistrySelect, 3, 586 (2018).
  9. Y. Xu, G. Shi and X. Duan, Acc. Chem. Res., 48, 1666 (2015).
  10. H. Cheng, K. L. P. Koh, P. Liu, T. Q. Thang and H. M. Duong, Colloids Surf., A, 481, 626 (2015).
  11. J. Guo, D. Wu, T. Wang and Y. Ma, Appl. Surf. Sci., 475, 56 (2019).
  12. B. M. Lee, B. S. Choi, J. Y. Lee, S. K. Hong, J. S. Lee and J. H. Choi, Carbon Lett., 31, 67 (2021).
  13. Y. Shu, Q. Bai, G. Fu, Q. Xiong, C. Li, H. Ding, Y. Shen and H. Uyama, Carbohydr. Polym., 227, 115346 (2020).
  14. B. Li, Z. Yuan, J. Schmidt and C. Xu, Eur. Polym. J., 111, 1 (2019).
  15. Y. Ma, J. Wang, Y. Xu, C. Wang and F. Chu, J. Therm. Anal. Calorim., 114, 1143 (2013).
  16. M. C. Basso, A. Pizzi, F. Al-Marzouki and S. Abdalla, Ind. Crops Prod., 87, 177 (2016).
  17. H. Teng and S. C. Wang, Carbon, 38, 817 (2000).
  18. J. I. Ozaki, S. K. I. Djaja and A. Oya, Ind. Eng. Chem. Res., 39, 245 (2000).
  19. L. Gao, X. Zheng, Y. Zhu, X. Zhao and J. Cheng, MATEC Web Conf., 142, 01005 (2018).
  20. H. K. Cho and J. S. Lim, Int. J. Thermophys., 38, 175 (2017).
  21. W. Hu, S. Cheng, H. Xia, L. Zhang, X. Jiang, Q. Zhang and Q. Chen, Green Process. Synth., 8, 408 (2019).
  22. X. Li, X. Li, J. Zhou, Y. Dong, Z. Xie, W. Cai and C. Zhang, RSC Adv., 7, 43965 (2017).
  23. Y. Xi, J. Cao, J. Li, P. Zhang, Y. Zhu and W. Han, J. Energy Storage, 37, 102470 (2021).
  24. M. K. Sahoo and G. R. Rao, Nanoscale Adv., 3, 5417 (2021).
  25. Y. Gou, T. Wang, D. Wu and Y. Tan, Electrochim. Acta, 366, 137404 (2021).
  26. M. Cornick, Chapter 9. Foam, In Phenolic resins: a century of progress, L. Pilato (Ed.), pp.189-208, Springer-Verlag Berlin, Germany (2010).
  27. J. Yun, L. Chen, X. Zhang, H. Zhao, Z. Wen and D. Zhu, J. Mater. Sci., 53, 14185 (2018).
  28. Y. Chang, G. Zhang, B. Han, H. Li, C. Hu, Y. Pang, Z. Chang and X. Sun, ACS Appl. Mater. Interfaces, 9, 29753 (2017).
  29. J. Han, Q. Li, C. Peng, N. Shu, F. Pan, J. Wang and Y. Zhu, Appl. Surf. Sci., 502, 144191 (2020).
  30. L. F. Chen, X. D. Zhang, H. W. Liang, M. Kong, Q. F. Guan, P. Chen, Z. Y. Wu and S. H. Yu, ACS Nano, 6, 7092 (2012).
  31. Y. Ding, Y. Li, Y. Dai, X. Han, B. Xing, L. Zhu, K. Qiu and S. Wang, Energy, 216, 119227 (2021).
  32. R. I. Jafri, N. Rajalakshmi and S. Ramaprabhu, J. Mater. Chem. A, 20, 7114 (2010).
  33. N. Q. Tran, B. K. Kang, M. H. Woo and D. H. Yoon, ChemSusChem, 9, 2261 (2016).
  34. J. Singh, H. Bhunia and S. Basu, Environ. Technol. Innov., 20, 101104 (2020).
  35. S. Huo, M. Liu, L. Wu, M. Liu, M. Xu, W. Ni and Y. M. Yan, J. Power Sources, 387, 81 (2018).
  36. W. Xu, C. Wei, J. Lv, H. Liu, X. Huang and T. Liu, J. Nanomaterials, 2013, 319840 (2013).
  37. N. Kishore, S. Sachan, K. N. Rai and A. Kumar, Carbon, 41, 2961 (2003).
  38. B. M. Lee, N. Umirov, J. Y. Lee, J. Y. Lee, B. S. Choi, S. K. Hong, S. S. Kim and J. H. Choi, Int. J. Energy Res., 45, 9530 (2021).
  39. R. Sharma, N. Chadha and P. Saini, Indian J. Pure Appl. Phys., 55, 625 (2017).
  40. B. M. Lee, V. T. Bui, H. S. Lee, S. K. Hong, H. S. Choi and J. H. Choi, Radiat. Phys. Chem., 163, 18 (2019).
  41. T. H. Ko, W. S. Kuo and Y. H. Chang, Polym. Compos., 21, 745 (2000).
  42. J. D. Kim, J. S. Roh and M. S. Kim, Carbon Lett., 21, 51 (2017).
  43. Y. Li, S. Xu, X. Wu, J. Yu, Y. Wang, Y. S. Hu, H. Li, L. Chen and X. Huang, J. Mater. Chem. A, 3, 71 (2015).
  44. J. Zou, W. Fang, X. He, H. Chen, X. Du, T. Jiang, J. Qin and L. Zhao, J. Mater. Sci., 56, 16387 (2021).
  45. B. M. Lee, C. U. Jeong, S. K. Hong, J. M. Yun and J. H. Choi, J. Ind. Eng. Chem., 82, 367 (2020).
  46. L. H. Zheng, M. H. Chen, S. X. Liang and Q. F. Lu, Diam. Relat. Mater., 113, 108267 (2021).
  47. D. Lee, J. Y. Jung, M. J. Jung and Y. S. Lee, Chem. Eng. J., 263, 62 (2015).
  48. M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol and K. S. W. Sing, Pure Appl. Chem., 87, 1051 (2015).
  49. P. Li, X. Ma, Y. Zhao, J. Tan, F. Liu and K . Zhu, Int. J. Electrochem. Sci., 14, 10790 (2019).
  50. S. Yun, T. Guo, X. Zhu, L. Zhang, J. Zhang, X. Gao and Y Gao, J. Porous Mater., 25, 1825 (2018).
  51. B. H. Kim, K. S. Yang and J. P. Ferraris, Electrochim. Acta, 75, 325 (2012).
  52. B. M. Lee, J. M. Yun and J. H. Choi, Korean J. Mater. Res., 32, 270 (2022).
  53. Y. Gogotsi and R. M. Penner, ACS Nano, 12, 2081 (2018).
  54. S. I. Shin, B. G. Lee, M. W. Ha and G. H. An, Korean J. Mater. Res., 29, 774 (2019).
  55. D. S. Jeong, J. M. Yun and K . H. K im, RSC Adv., 7, 44735 (2017).